К.В. Глаголев, А.Н. Морозов
  ВВЕДЕНИЕ    ПРЕДЫДУЩАЯ ГЛАВА    СЛЕДУЮЩАЯ ГЛАВА    ЗАКЛЮЧЕНИЕ
. . . . .
..::  3.4. Второе начало термодинамики  ::..
ВВЕДЕНИЕ
ГЛАВА 1
ГЛАВА 2
ГЛАВА 3
ГЛАВА 4
ГЛАВА 5
ГЛАВА 6
ЗАКЛЮЧЕНИЕ
 

   Сформулированное выше первое начало термодинамики определяет соотношение между количеством подводимой к телу теплоты, совершаемой при этом работой и изменением внутренней энергии тела. При этом первое начало термодинамики не ограничивает возможность протекания термодинамического процесса в любом направлении. В частности, оно допускает как процесс самопроизвольной передачи теплоты от более нагретого тела к менее нагретому, так и обратный процесс самопроизвольного перехода теплоты от холодного тела к горячему. Но, из повседневного опыта нам известно, что при соединении двух тел с разными температурами происходит охлаждение горячего и нагрев холодного. Обратный процесс в природе не наблюдается и для его организации требуется создание специальных холодильных машин, работающих с использованием внешних источников энергии.

   Указанное обстоятельство, впервые отмеченное Карно в 1824 году, привело в 1850-1851 годах к формулировке второго начала термодинамики, дающего ограничение на направление протекания термодинамических процессов. Первая формулировка второго начала термодинамики была дана в 1850 году Рудольфом Юлиусом Эмануэль Клаузиусом (1822 - 1888) в следующем виде: "Теплота сама по себе не может перейти от более холодного тела к более теплому". Несколько иная формулировка второго начала термодинамики была предложена в 1851 году Томсоном (лордом Кельвином): "В природе не возможен круговой процесс, единственным результатом которого была бы механическая работа, совершаемая за счет отвода тепла от теплового резервуара".

   Можно показать, что приведенные выше формулировки второго начала термодинамики эквивалентны между собой. Действительно, если предположить, что в нарушение постулата Клаузиуса возможен самопроизвольный переход теплоты от менее нагретого тела к более нагретому, приводящий к нагреву горячего тела и охлаждению холодного, то, используя эти тела в качестве нагревателя и холодильника тепловой машины можно, было бы получать механическую работу за счет отвода тепла от нагревателя. Но, возможность протекания такого процесса противоречит постулату Томсона. С другой стороны, если предположить, что может быть реализован нарушающий постулат Томсона круговой процесс, при котором от менее нагретого тела отнимается теплота и полностью преобразуется в механическую работу, а эта работа далее, например за счет трения, используется для нагрева более нагретого тела, то становится возможен процесс передачи теплоты от холодного тела к горячему. Но, такой процесс запрещен постулатом Кельвина. Таким образом, отказ от одного постулата неминуемо влечет невыполнение второго, что указывает на их эквивалентность.

   Отметим общую особенность приведенных выше формулировок второго начала термодинамики. Как в постулате Клаузиуса, так и в постулате Томсона при указывании на невозможность протекания процессов отмечается, что запрет распространяется только на процессы, единственным конечным результатом которых являлся бы или переход теплоты "от более холодного тела к более теплому" или "механическая работа, совершаемая за счет отвод тепла от теплового резервуара". Таким образом, указанные процессы не запрещены в принципе, а только ограничены невозможностью их протекания без каких либо изменений в окружающей среде или самой термодинамической системе.

   Действительно, можно организовать процесс передачи теплоты от менее нагретого тела к более горячему за счет совершения работы, как это сделано в холодильной машине. Но, если в термодинамическую систему включить устройство, совершающее эту работу, то постулат Клаузиуса для расширенной системы выполнится. Аналогично можно совершить механическую работу за счет охлаждения газа при его истечении из сопла ракетного двигателя, но при включении в термодинамическую систему некого гипотетического устройства, переводящего газ в исходное состояние, для этой расширенной системы постулат Томсона будет справедлив.

   Из второго начала термодинамики вытекает невозможность создания вечного двигателя второго рода, принцип действия которого основан на полном преобразовании теплоты в работу. Идея такого источника полезной работы или энергии заключается в использовании внутренней энергии, содержащейся в природных телах (воздухе, воде, почве и т.д.), для совершения механической работы. Далее, после совершения полезной работы и перехода ее в теплоту за счет тех или иных диссипативных процессов, внутренняя энергия природных тел восстанавливается и термодинамический цикл завершается. Возможность функционирования вечного двигателя второго рода не противоречит закону сохранения энергии (первому началу термодинамики), но запрещается вторым началом термодинамики.






 
  
  
2000-2001©  кафедра ФИЗИКИ МГТУ