Лабораторная работа			
Περινοτοριασ μερίννο			
Паболетовная пабота			
Пабараторная дабота			
Παρουστορικας ραρουσ			
Παρουστουμας ραρουσ			
Παίουρατουμας ραίοτα			
Παίνηστορμας ραίντα			
Пабораторная работа			
Пабораторная работа			
Паборатория работа			
Пабопатопная пабота			
Пабораторцая работа			
Пабораторияя работа			
Παδορατορίας ραδοτα			
Паболатопная пабота			
Паболатопная пабота			
Пабораторная работа			
Пабораторцая работа			
Пабопатопная пабота			
Паболаторная пабота			
«Исследование схем на операционном усилителе»			
Выполнил	Выполнил		Группа
Проверил МГТУ им. Н.Э. Баумана Стенд №	Проверил	іміі і ў им. п.э. раумана	Стенд №

2. ЗАДАНИЯ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

2.2. Исследование инвертирующего, неинвертирующего и дифференциального усилителя

2.2.1. Исследование инвертирующего усилителя

Для проведения измерений подсоедините к мультиметрам измерительные провода (красный ко входу $V\Omega$, черный — ко входу COM). Установите переключатели мультиметров в положение $V_=$ (предел измерения 20).

Соберите схему инвертирующего усилителя, как показано на принципиальной (рис. 2.1) и монтажной (рис. 2.2) схеме.

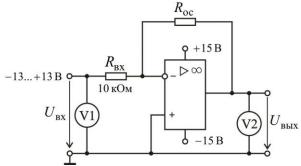


Рис. 2.1. Электрическая схема инвертирующего усилителя

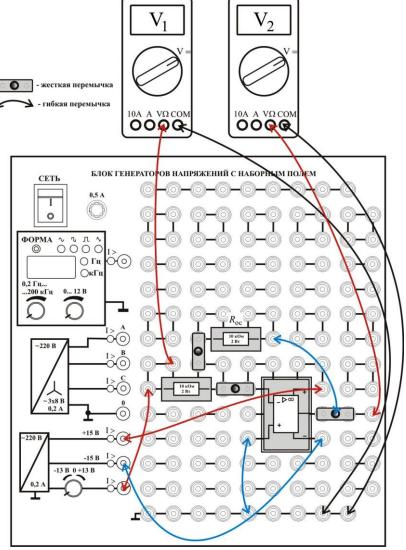


Рис. 2.2. Монтажная схема инвертирующего усилителя

Включите общее питание стенда, тумблер «Сеть» Блока генераторов напряжений с наборным полем, питание блока мультиметров и цифрового осциллографа.

Измерьте величину выходного напряжения $U_{\rm вых}$ при различных сопротивлениях обратной связи $R_{\rm oc}$ и входных напряжениях $U_{\rm вx}$ согласно табл. 2.1. Занесите эти значения в строки «Эксп.» таблицы.

Примечание. Вращением ручки потенциометра регулируемого источника, устанавливайте рекомендуемые значения входного напряжения $U_{\rm BX}$ с точностью $\pm 0,2$ В (напряжение контролируется вольтметром V_1 , рис. 2.2) и заносите их в строку таблицы « $U_{\rm BX}$, В установленное». Выходное напряжение $U_{\rm BMX}$ (напряжение контролируется вольтметром V_2 , рис. 2.2) заносите в табл. 2.1 с точностью до второго знака после запятой.

Таблииа 2.1

											иоли	700 -11
$U_{_{ m BX}},{ m B}$ рекомендуемое		-10	-8	-6	-4	-2	0	2	4	6	8	10
$U_{\scriptscriptstyle m BX},{ m B}$												
установлен	ное											
$U_{\scriptscriptstyle m BMX}, { m B}$ при	Эксп.											
$R_{\rm oc} = 10$ кОм	Расч.											
$U_{\scriptscriptstyle \mathrm{BX}},\mathrm{B}$												
установленное												
$U_{\scriptscriptstyle m BMX}, { m B}$ при	Эксп.											
$R_{\rm oc} = 22 { m кOm}$	Расч.											
$U_{\scriptscriptstyle \mathrm{BX}},\mathrm{B}$												
установленное												
$U_{\scriptscriptstyle m BЫX}, { m B}$ при	Эксп.											
$R_{\rm oc} = 47 {\rm кOm}$ Расч.												

В нижние строки (серый цвет) запишите расчетные значения. Расчет провести по выражению

$$U_{\text{BMX}} = -\frac{R_{\text{OC}}}{R_{\text{BY}}} \cdot U_{\text{BX}},$$

где в качестве $U_{\rm BX}$ следует брать из табл. 2.1 установленные значения. Если расчетное $U_{\rm BMX}$ превышает $\pm 14~{\rm B}$, то в соответствующую ячейку таблицы следует заносить $\pm 13,6~{\rm B}$. Убедитесь в близости расчетных и экспериментальных значений. Объясните их небольшое расхождение.

На графике, рис. 2.3 постройте кривые зависимостей $U_{\rm вых}=f(U_{\rm вx})$ при различных сопротивлениях обратной связи. Надпишите построенные кривые следующим образом: **Инв 10; Инв 22; Инв 47.**

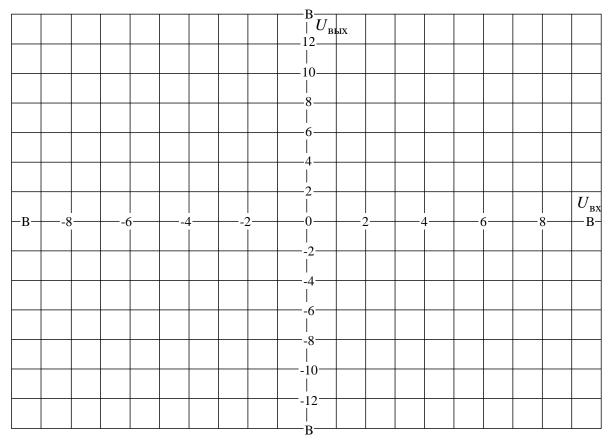


Рис. 2.3. Графики зависимостей $U_{\text{вых}} = f(U_{\text{вх}})$

Выключите тумблер «Сеть» Блока генераторов напряжений с наборным полем.

2.2.2. Исследование неинвертирующего усилителя

Соберите схему неинвертирующего усилителя, как показано на принципиальной (рис. 2.4) и монтажной (рис. 2.5) схеме.

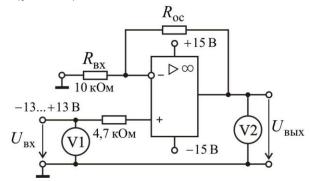


Рис. 2.4. Электрическая схема неинвертирующего усилителя

Включите тумблер «Сеть» Блока генераторов напряжений с наборным полем.

С помощью мультиметра V_2 (см. рис. 2.5) измерьте величину выходного напряжения $U_{\rm вых}$ при различных сопротивлениях обратной связи $R_{\rm oc}$ и входных напряжениях $U_{\rm вx}$ согласно табл. 2.2. Занесите эти значения в строки «Эксп.» таблицы.

В нижние строки (серый цвет) запишите расчетные значения. Расчет провести по выражению

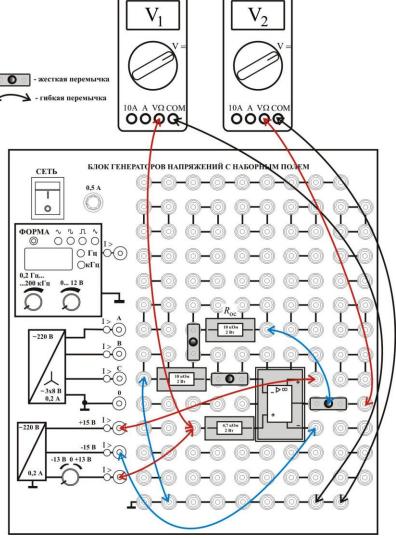


Рис. 2.5. Монтажная схема неинвертирующего усилителя

Таблица 2.2

										иолиц	a 2.2	
$U_{_{ m BX}},{ m B}$	}	-10	-8	-6	-4	-2	0	2	4	6	8	10
рекомендуемое		-10	-0	-0	-4	-2	U	<i>_</i>	-	U	O	10
$U_{\scriptscriptstyle m BX},{ m B}$												
установлен	ное											
$U_{\scriptscriptstyle m BMX}, { m B}$ при	Эксп.											
$R_{\rm oc} = 10$ кОм	Расч.											
$U_{\scriptscriptstyle \mathrm{BX}},\mathrm{B}$												
установленное												
$U_{\scriptscriptstyle m BЫX}, { m B}$ при	Эксп.											
$R_{\rm oc} = 22 { m кOm}$	Расч.											
$U_{\scriptscriptstyle \mathrm{BX}},\mathrm{B}$												
установленное												
$U_{\scriptscriptstyle m BЫX}, { m B}$ при	Эксп.											
$R_{\rm oc} = 47 { m кOm}$	Расч.											

$$U_{\text{BbIX}} = \left(1 + \frac{R_{\text{oc}}}{R_{\text{BX}}}\right) \cdot U_{\text{BX}},$$

где в качестве $U_{\rm BX}$ следует брать из табл. 2.2 установленные значения. Если расчетное $U_{\rm BMX}$ превышает $\pm 14~\rm B$, то в соответствующую ячейку таблицы следует заносить $\pm 13,6~\rm B$. Убедитесь в близости расчетных и экспериментальных значений. Объясните их небольшое расхождение.

На графике, рис. 2.3 постройте кривые зависимостей $U_{\rm вых}=f(U_{\rm вx})$ при различных сопротивлениях обратной связи. Надпишите построенные кривые следующим образом: **Неинв 10**; **Неинв 22**; **Неинв 47**.

Выключите тумблер «Сеть» Блока генераторов напряжений с наборным полем.

2.2.3. Исследование дифференциального усилителя

Соберите схему дифференциального усилителя, как показано на принципиальной (рис. 2.6) и монтажной (рис. 2.7) схеме.

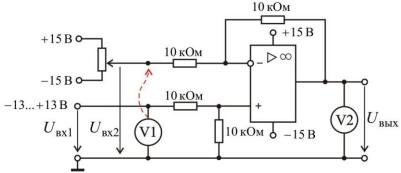


Рис. 2.6. Электрическая схема дифференциального усилителя

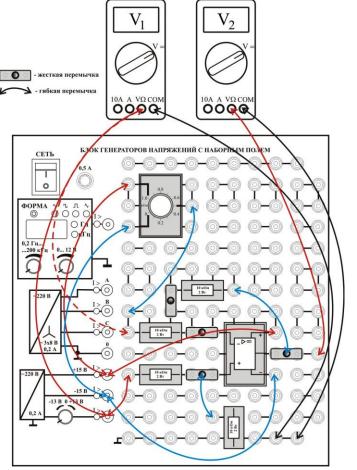
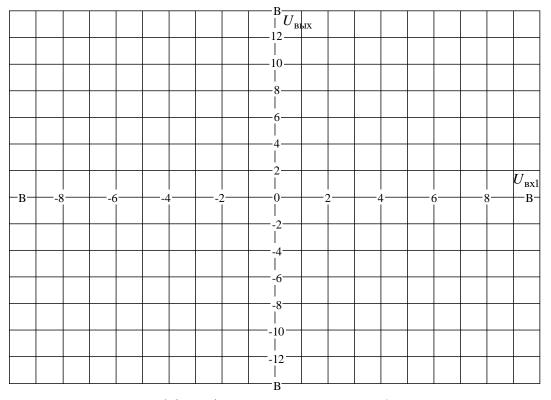



Рис. 2.7. Монтажная схема дифференциального усилителя

С помощью мультиметра V_2 (см. рис. 2.7) измерьте величину выходного напряжения $U_{\rm вых}$ при различных входных напряжениях $U_{\rm вх1}$ и $U_{\rm вх2}$ согласно табл. 2.3. Занесите результаты измерений в таблицу.

Примечание. Напряжения $U_{\rm Bxl}$ и $U_{\rm Bx2}$ контролировать вольтметром $\rm V_l$ (см. рис. 2.7), перенося измерительный провод на соответствующие точки схемы. На графике, рис. 2.8 постройте кривые зависимостей $U_{\rm Bblx}=f(U_{\rm Bxl})$ при различных значениях $U_{\rm Bx2}$. Надпишите построенные кривые следующим образом: Дифф_-4; Дифф_0; Дифф_+4.

Таблица 2.3 $U_{\scriptscriptstyle \mathrm{BX}1}$, В рекомендуе мое -6 -4 -2 0 +2 +4 +6 $U_{\rm BX1}$, В установлен ное $U_{\scriptscriptstyle \mathrm{BMX}}$, В при $U_{\rm BX2~pek} = -4~\rm B$ $U_{\rm BX2~ycr} =$ $U_{\text{вых}}$, В при $U_{\text{Bx2 pex}} = 0 \,\text{B}$ $U_{\rm BX2~ycT} =$ $U_{\scriptscriptstyle
m BMX}, {
m B}$ при $U_{\rm BX2~pek} = +4~{\rm B}$ $U_{\rm BX2\ vct} =$

Рис. 2.8. Графики зависимостей $U_{\text{вых}} = f(U_{\text{вх1}})$

Выключите тумблер «Сеть» Блока генераторов напряжений с наборным полем.

2.3. Исследование сумматора, интегратора и дифференциатора на основе ОУ 2.3.1. Исследование инвертирующего сумматора на операционном усилителе

Соберите схему сумматора, как показано на принципиальной (рис. 2.9) и монтажной (рис. 2.10) схеме.

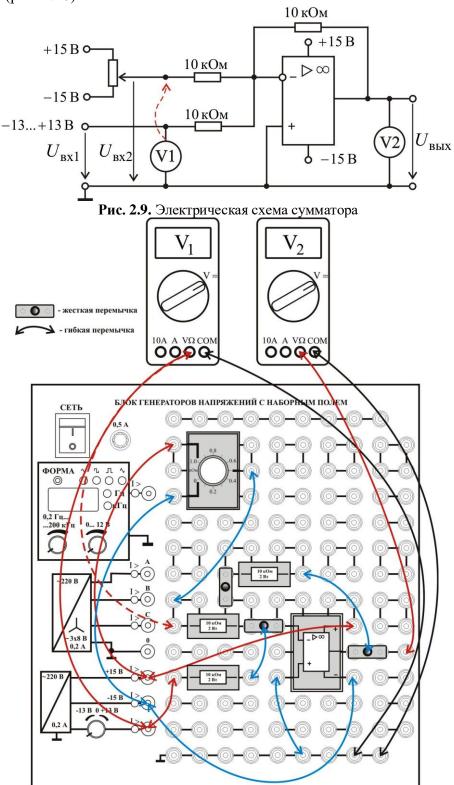


Рис. 2.10. Монтажная схема сумматора

Включите тумблер «Сеть» Блока генераторов напряжений с наборным полем.

С помощью мультиметра V_2 (см. рис. 2.10) измерьте величину выходного напряжения $U_{\rm вых}$ при различных входных напряжениях $U_{\rm вх1}$ и $U_{\rm вх2}$ согласно табл. 2.4. Занесите эти значения в строки «Эксп.» таблицы.

В нижние строки (серый цвет) запишите расчетные значения. Расчет провести по выражению

$$\boldsymbol{U}_{\text{BAIX}} = -\frac{R_{\text{oc}}}{10} \cdot \left(\boldsymbol{U}_{\text{BX1}} + \boldsymbol{U}_{\text{BX2}}\right),$$

где $U_{\rm Bx1}$ и $U_{\rm Bx2}$ брать из табл. 2.4 (установленные значения). Если расчетное $U_{\rm BbIX}$ превышает ± 14 В, то в соответствующую ячейку таблицы следует заносить $\pm 13,6$ В. Убедитесь в близости расчетных и экспериментальных значений. Объясните их небольшое расхождение.

Таблица 2.4

$U_{ m Bx1},{ m B}$										10	аолице	1 2.7
		-10	-8	-6	-4	-2	0	2	4	6	8	10
рекомендуемое												
$U_{\mathrm{BX1}},\mathrm{E}$												
установлен	ное											
$U_{\mathrm{BЫX}}$, В при $R_{\mathrm{oc}} = 10\mathrm{кОм}$	Эксп.											
$U_{\text{Bx2_pek}} = +2 \text{ B}$ $U_{\text{Bx2_yct}} =$	Расч.											
$U_{\rm BXI}$, В установленное												
$U_{\text{вых}}$, В при $R_{\text{oc}} = 10 \text{ кОм}$	Эксп.											
$U_{\text{BX2_pek}} = -2 \text{ B}$ $U_{\text{BX2_yct}} =$	Расч.											
$U_{ m BXI}$, В установленное												
$U_{\text{вых}}$, В при $R_{\text{oc}} = 22 \text{кOm}$	Эксп.											
$U_{\text{BX2_pek}} = +2 \text{ B}$ $U_{\text{BX2_yct}} =$	Расч.											
$U_{\mathtt{Bxl}}$, B												
установленное												
$U_{\text{вых}}$, В при $R_{\text{oc}} = 22 \text{кОм}$	Эксп.											
$U_{\text{BX2_peK}} = -2 \text{B}$ $U_{\text{BX2_yct}}$	Расч.											

Выключите тумблер «Сеть» Блока генераторов напряжений с наборным полем.

2.3.2. Исследование интегратора на операционном усилителе

Соберите схему интегратора, как показано на принципиальной (рис. 2.11) и монтажной (рис. 2.12) схеме.

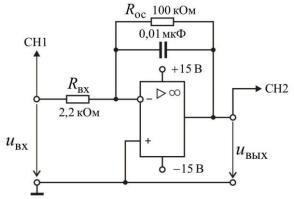


Рис. 2.11. Электрическая схема интегратора

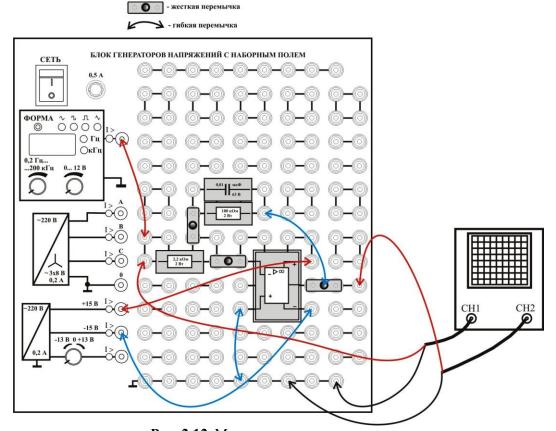


Рис. 2.12. Монтажная схема интегратора

Включите тумблер «Сеть» Блока генераторов напряжений с наборным полем. Кнопкой «ФОРМА» установите прямоугольный $\ ^{\mbox{$\mathbb Q$}}\$, ручкой «ЧАСТОТА» установите частоту 1 к $\mbox{$\Gamma$}\$ ц.

Нажимая клавиши СН1 и СН2 осциллографа, добейтесь, чтобы обе клавиши подсвечивались. Таким образом, вы сможете наблюдать на экране осциллографа как входное прямоугольное напряжение, так и проинтегрированное напряжение на выходе. Установите развертку 200 мкс/дел. Масштаб по вертикали канала СН1 установите 1 В/дел, а по каналу СН2 10 В/дел. Нажмите кратковременно клавишу «SET TO ZERO», переместив тем самым осциллограммы в центр экрана. Вращая ручку «АМПЛИТУДА» добейтесь, чтобы полный (от полки до полки) размах входного прямоугольного сигнала составлял 2 клетки (2 В). Кратковременно нажмите клавишу «RUN/STOP», она должна

подсветиться красным цветом. Этим действием вы остановите развертку и зафиксируете сигналы на экране.

По форме выходного сигнала убедитесь, что происходит интегрирование.

Покажите результат преподавателю.

Еще раз кратковременно нажмите клавишу «RUN/STOP», она должна подсветиться зеленым цветом.

Переведите переключатель в положение √ . Вращая ручку «АМПЛИТУДА» добейтесь, чтобы полный (от полки до полки) размах входного треугольного сигнала составлял 4 клетки (4 В). Кратковременно нажмите клавишу «RUN/STOP», она должна подсветиться красным цветом, по форме выходного сигнала убедитесь, что происходит интегрирование.

Покажите результат преподавателю.

Выключите тумблер «Сеть» Блока генераторов напряжений с наборным полем.

2.3.3. Исследование дифференциатора на операционном усилителе

Соберите схему дифференциатора, как показано на принципиальной (рис. 2.13) и монтажной (рис. 2.14) схеме.

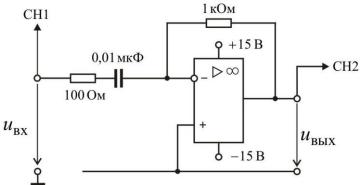


Рис. 2.13. Электрическая схема дифференциатора

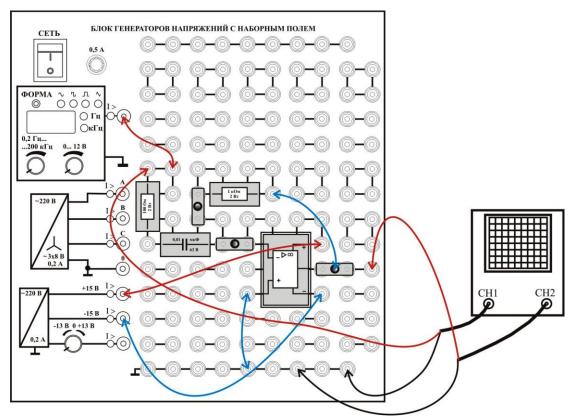


Рис. 2.14. Монтажная схема дифференциатора

Включите тумблер «Сеть» Блока генераторов напряжений с наборным полем. Кнопкой «ФОРМА» установите треугольный сигнал \wedge , ручкой «ЧАСТОТА» установите частоту 1 к Γ ц.

Установите развертку 200 мкс/дел. Масштаб по вертикали канала СН1 установите 1 В/дел, а по каналу СН2 0,2 В/дел. Нажмите кратковременно клавишу «SET TO ZERO». Вращая ручку «АМПЛИТУДА» добейтесь, чтобы полный (от пика до пика) размах входного треугольного сигнала составлял 2 клетки (2 В). Кратковременно нажмите клавишу «RUN/STOP», она должна подсветиться красным цветом.

По форме выходного сигнала убедитесь, что происходит дифференцирование.

Покажите результат преподавателю.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что называется электронным усилителем? Объясните принцип действия усилителя.
 - 2. Перечислите основные характеристики и параметры усилителей.
 - 3. С какой целью в усилитель вводится обратная связь?
- 4. Почему в усилителях постоянного тока нельзя применять конденсаторы, как элементы межкаскадной связи?
 - 5. Что такое синфазное и дифференциальное напряжение?
- 6. Чем операционный усилитель отличается от усилителей на биполярных и полевых транзисторах?
 - 7. Поясните основные параметры операционных усилителей.
 - 8. Каковы основные схемы включения операционных усилителей?