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LOCAL TROPICAL VARIETIES

D. A. STEPANOV

Abstract. Let k be a field with a real valuation ν and R a k-algebra. We show
that there exist a k-algebra K and a valuation µ on K extending ν such that
any real valuation of R is induced by µ via some homomorphism from R to K.
Now let ν be trivial and R a complete local Noetherian ring with the residue
field k. Let K be the ring k̄[[tR]] of Hahn series with its natural valuation µ
and coefficients in k̄. We prove the following weak universality property: for

any local valuation v and a finite set of elements x1, . . . , xn of R there exists
a homomorphism f : R → K such that v(xi) = µ(f(xi)), i = 1, . . . , n. This
implies that if R = k[[x1, . . . , xn]]/I for an ideal I, then every point of the
local tropicalization of I lifts to a K-point of R.

1. Introduction

Let k be a field and R a commutative k-algebra with unity. A real (or rank one)
valuation on R is a function v : R → R ∪ {+∞} such that v(1) = 0, v(0) = +∞,
v(xy) = v(x) + v(y) and v(x + y) ≥ min{v(x), v(y)} for all x, y ∈ R. In this
paper we consider only real ring valuations. Assume that k is endowed with some
valuation ν and K is some k-algebra with a valuation µ extending ν. Then every
homomorphism f : R → K of k-algebras induces a valuation µ ◦ f of R extending
ν. The first question we address in this paper is the following: given R and ν, does
there exist a universal valued field K such that any valuation of R that extends
ν is obtained via some homomorphism f : R → K as described above? We give
an affirmative answer to this question in Theorem 2.7 of Section 2. Note that the
universal field we are looking for is different from the maximal immediate extension
of k ([Krull, p. 191]) since we do not insist that v must have the same residue field
as ν.

The second problem that we study in this work is lifting points in local tropical
varieties. If R is a local ring with the maximal ideal m, we call a valuation v of
R local, if v is nonnegative on R and positive on m. Note that if R contains a
field k, any local valuation of R must be trivial on k, i.e., v(x) = 0 for all x ∈ k,
x 6= 0. Now let R = k[[x1, . . . , xn]] be the ring of formal power series in variables
x1, . . . , xn, and I ⊂ R an ideal. The local tropicalization Trop>0(I) of I is the set

Trop>0(I) = {(v(x1), . . . , v(xn) | v is local, v|I = +∞} ⊆ R
n
,

where v runs over all local valuations of R that take value +∞ on the ideal I, and
R = R∪{+∞}. This is a particular case of [PPS, Definition 6.6]; see also Section 4.
Let us introduce two special fields. Denote by k̄ some algebraic closure of k. The
field K = k̄((tQ)) =

⋃
N≥1 k̄((t

1/N )) of Puiseux series with coefficients in k̄ is the
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set of all formal sums ∑

m∈Q

amtm,

where am ∈ k̄, the set {m | am 6= 0} ⊂ Q is bounded from below, and all its elements
have bounded denominators. The field K ′ = k̄((tR)) of Hahn series is the set of all
formal sums

a(t) =
∑

m∈R

amtm,

where the set {m | am 6= 0} is well-ordered, that is, any its subset has the least
element. Addition and multiplication in K and K ′ are defined in a natural way.
These fields carry also a natural valuation µ determined by µ(t) = 1. The ring of
Puiseux (respectively Hahn) series O = k̄[[tQ]] (resp., O′ = k̄[[tR]]) is the valuation
ring of µ, i.e., the subring of K (resp. K ′) where µ is nonnegative. In analogy with
the theory of usual non-local tropicalization (see, e.g., [JMM]), we say that a point

w = (w1, . . . , wn) ∈ Trop>0(I)∩Q
n
, where Q = Q∪{+∞}, lifts to O, if there exists

a homomorphism f : R → K such that wi = µ(f(xi)) for all i = 1, . . . , n. Lifting
of a point w ∈ Trop>0(I) to O′ can be defined similarly. In the non-local theory
of tropicalization, it is known that if characteristic of k is 0, then each rational
point of the tropicalization of a variety admits a lifting to a K-point of the variety.
Several proofs and generalizations are given in [Draisma], [JMM], [Katz], [Payne].
For k = C and local tropical varieties, a similar result was announced by N. Touda
in [Touda], however, a complete proof did not appear.

The possibility to lift points of local tropical varieties to O orO′ means that these
rings play a role of a kind of universal domains with respect to valuations on local
k-algebrasR, where the field k is trivially valued. This is not the strong universality
introduced in the first paragraph of this Introduction. Indeed, if we set R = k[[x, y]]
and v to be a monomial valuation defined by v(x) = v(y) = 1, then it is easy to
see that v is not induced by any homomorphism from R to O or O′. However, it
is easy to define a homomorphism f : R → O, say, by sending x and y to t, such
that µ(f(x)) = v(x), µ(f(y)) = v(y). Precisely, we have the following property,
which we call weak universality of the rings of Puiseux and Hahn series. Assume
that R is a complete local Noetherian ring, k is a field isomorphic to the residue
field of R and contained in R, and x1, . . . , xn ∈ R a finite collection of elements.
Then for each local valuation v of R there exists a homomorphism f : R → O′ such
that v(xi) = µ(f(xi)) for all i = 1, . . . , n. If, moreover, k has characteristic 0 and
v takes only rational values, then there exists a homomorphism f : R → O with
the same property. Similarly, lifting points in the non-local tropical varieties can
be expressed as the weak universality of the fields of Puiseux and Hahn series with
respect to valuations on finitely generated k-algebras R. We prove these properties
in Section 3 and then apply them to the local tropicalization in Section 4.

Our proof of the weak universality of the Puiseux and Hahn series rings is closed
to the proof of the lifting points property of tropical varieties given in [JMM]. We
also use a descent by dimension, but we descent not to dimension 0 but to dimension
r equal to the rational rank of the value group of v; this allows to work always over
the field k̄ and not to pass to varieties over the field of Puiseux series.

I thank B. Teissier and M. Matusinski for their comments on the draft of this
work.

2. The universal field

In this section we show existence of the universal valued field for a given valued
ring k and a k-algebra R. The proof is based on the following theorem about
extension of valuations to a tensor product. If A is a ring, B is an A-algebra, and
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v is a valuation of B, then v induces a valuation of A which we call the restriction
of v and denote v|A.

Theorem 2.1. Let A be a commutative ring with unity and B and C A-algebras,
also with unity. Let u be a valuation of B, v a valuation of C, and assume that
u|A = v|A. Then there exists a valuation w of B

⊗
A C that extends both u and v:

w|B = u, w|C = v, where B and C map to B
⊗

A C as B ∋ b 7→ b⊗1, C ∋ c 7→ 1⊗c.

This is stated without a proof in [Huber, 1.1.14f]. Below we give two proofs1 of
Theorem 2.1. The first proof follows from recent stronger results of I. B. Yaacov
[Yaacov] and J. Poineau [Poineau]. It is known that in the conditions of Theo-
rem 2.1, the tensor product B

⊗
AC carries a natural seminorm ‖ · ‖:

‖z‖ = inf max
i

(exp(−u(xi)− v(yi))), z =
∑

i

xi ⊗ yi,

where the infinum is taken over all representations of z ∈ B
⊗

A C as
∑

xi ⊗ yi,
xi ∈ B, yi ∈ C.

Theorem 2.2 ([Yaacov, Theorem 6]). Let k be a valued algebraically closed field,
and K and L two field extensions of k. Assume that K and L are endowed with
valuations u and v that restrict to the given valuation of k. Then, the natural
seminorm ‖·‖ of K

⊗
k L is multiplicative and the function − log ‖·‖ : K

⊗
k L → R

is a valuation extending both u and v.

In [Yaacov], this theorem is proven with a help of non-standard technique (ultra-
powers) and results on quantifier elimination in some formal theories. It can also
be deduced from [Poineau, Section 3], where the technique is the theory of affinoid
algebras. To reduce Theorem 2.1 to Theorem 2.2, assume first that the valuation u
or v has a nontrivial home. Let p = home(u) = {x ∈ B|u(x) = +∞}, q = home(v).
Denote by p⊗ 1 and 1⊗ q the extensions of p and q to B

⊗
A C. Then u and v can

be considered as valuations on the rings B/p and C/q respectively, and

B/p
⊗

A

C/q ≃ (B
⊗

A

C)/(p⊗ 1 + 1⊗ q)

and B/p
⊗

A/p∩A C/q are isomorphic as A-algebras. It follows that we can assume

from the beginning that A, B, and C are domains, and home(u) = home(v) = {0}.
Thus, u and v extend canonically to the fields of fractions of B and C. Then,
passing to the localizations (see, e.g., [AM, Propositions 3.5 and 3.7]), we can
assume that A = k, B = K, and C = L are fields, so it remains only to reduce to an
algebraically closed field k. Let k̄ be an algebraic closure of k. Since K ′ = K

⊗
k k̄

and L′ = L
⊗

k k̄ are integral extensions of K and L respectively, there exist a
prime ideal p ⊂ K ′ lying over {0} and a prime ideal q ⊂ L′ lying over {0}. Now, let
K̄ and L̄ be the fields of fractions of K ′/p and L′/q respectively. K̄ is an algebraic
extension of K, thus, by [Lang, Chapter XII, §3], u extends to K̄, and similarly v
extends to L̄. The tensor product K ⊗k L maps to K̄ ⊗k̄ L̄, and this map induces
embeddings of valued fields K ⊆ K̄ and L ⊆ L̄. Thus, Theorem 2.1 indeed follows
from Theorem 2.2.

The second proof of Theorem 2.1 is based on the results of G. M. Bergman. This
proof uses a more standard argument of commutative algebra, so we think it is of
independent interest. A pseudovaluation on a ring R is a map v : R → R ∪ {+∞}
satisfying the same axioms as a valuation with the exception that instead of v(xy) =
v(x) + v(y) we require only v(xy) ≥ v(x) + v(y).

1After the submission of this paper, a proof of a more general version (the valuations u and v
are not assumed to be of rank 1) has appeared in a preprint Reified valuations and adic spectra

by K. S. Kedlaya available online on ArXiv.
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Theorem 2.3. Let p be a pseudovaluation on a commutative ring R with unity,
and S a multiplicative subsemigroup in (R, ·) such that p|S is a semigroup homo-
morphism from S to R. Let I be an ideal of R such that there is no s ∈ S, f ∈ I
satisfying v(s) = v(f) < v(f − s). Then there exists a valuation v ≥ p on R such
that v|I = +∞, v|S = p|S.

Proof. This theorem is a direct generalization of [Bergman, Corollary 1]. Indeed,
the formula q(x) = supf∈I p(x + f) defines a pseudovaluation on R. On the semi-
group S, this pseudovaluation coincides with p. Then, by [Bergman, Theorem 2]
there exists a valuation v ≥ q on R that coincides with q on S. Since q|I = +∞,
we have also v|I = +∞. �

We continue with an auxiliary lemma.

Lemma 2.4. Let B and C be two finitely generated A-algebras over a ring A.
Let u and v be valuations of B and C respectively that induce the same valuation
on A. Finally, let x1, . . . , xm ∈ B and y1, . . . , yn ∈ C be two fixed collections of
elements. Then there exists a valuation w on B

⊗
A C such that for all i = 1, . . . ,m

w(xi ⊗ 1) = u(xi), and for all j = 1, . . . , n w(1 ⊗ yj) = v(yj).

Proof. Step 1. First, by the same argument as above we can reduce to the case when
A = k is a field, B and C are finitely generated domains over k, and home(u) = {0},
home(v) = {0}. Next, adding or eliminating some elements if necessary, we can
suppose that xi generate B and yj generate C as rings over k, and none of xi, yj
is 0. Represent B as a quotient of a polynomial ring k[X1, . . . , Xm]/I and C as
k[Y1, . . . , Yn]/J for ideals I ⊂ k[X ] = k[X1, . . . , Xm] and J ⊂ k[Y ] = k[Y1, . . . , Yn];
here xi = Xi mod I, yj = Yj mod J .

Step 2. Let us recall some terminology. We denote also by u the valuation u of
B restricted to k (= v of C restricted to k). If w = (w1, . . . , wm) ∈ Rn is a vector
and f =

∑
aMXM ∈ k[X ] is a polynomial in m variables, the number

w(f) = min
M

(u(aM ) + 〈w,M〉),

where 〈w,M〉 =
∑

wiMi, is called w-order of f . The polynomial

inw(f) =
∑

u(aM )+〈w,M〉=w(f)

aMXM

is called the w-initial form of f . For an ideal I ⊂ k[X ], the ideal inw I = (inw(f)|f ∈
I) generated by all w-initial forms of elements of I is called the w-initial ideal of I.

Now let w1 = (u(x1), . . . , u(xm)) ∈ Rm, w2 = (v(y1), . . . , w(yn)) ∈ Rn. Note
that since u and v take finite values on xi and yj , the initial ideals inw1 I and inw2 J
are monomial free. Denote k[X,Y ] = k[X1, . . . , Xm, Y1, . . . , Yn], w = (w1, w2) ∈
Rm+n, and let I ⊗ 1 and 1 ⊗ J be the extensions of the ideals I and J to k[X,Y ]
respectively. Then, inw(I ⊗ 1) = inw1(I)⊗ 1, and similarly for J . Indeed, consider
f =

∑
fibi ∈ I ⊗ 1, where fi ∈ k[X,Y ], bi ∈ I. Write f as a polynomial in Y :

f =
∑

N bNY N , where bN = bN (X) ∈ I, bN 6= 0. Consider the combination

(1)
∑

w1(bN )+〈w2,N〉 is minimal

inw1(bN )Y N .

If it is 0, then this holds identically in Y , and thus inw1(bN ) = 0 for all bN involved
in (1). But this contradicts the assumption bN 6= 0. It follows that the w-initial
form of f is a k[X,Y ]-linear combination of initial forms of bN ∈ I.

Step 3. Our next claim is that the initial ideal inw(I ⊗ 1+ 1⊗ J) coincides with
inw1(I)⊗ 1+ 1⊗ inw2(J). The inclusion ⊇ is clear, so let us prove the inclusion ⊆.



UNIVERSAL VALUED FIELDS 5

Consider an element

h =
∑

i

fibi +
∑

j

gjcj ∈ I ⊗ 1 + 1⊗ J,

where fi, gj ∈ k[X,Y ], bi ∈ I, cj ∈ J . We can assume that bi generate the ideal I, cj
generate the ideal J , the initial forms inw1(bi) generate the initial ideal inw1 I, and
inw2(cj) generate inw2 J . If the initial forms do not cancel, that is the combination

∑
inw(fi) inw1(bi) +

∑
inw(gj) inw2(cj)

is not 0, then it is the w-initial form hw of h, and there is nothing to prove. If this
combination is 0, it follows that

∑
inw(fi) inw1(bi),

∑
inw(gj) inw2(cj) ∈ inw(I ⊗ 1) ∩ inw(1 ⊗ J),

the last intersection being equal to the product inw(I ⊗ 1) · inw(1 ⊗ J) by Corol-
lary 2.6 below. Thus, using Step 2,

∑
inw(fi) inw1(bi) = −

∑
inw(gj) inw2(cj) can

be written as
∑

hij inw1
(bi) inw2(cj), hij ∈ k[X,Y ]. Then, consider

h =
∑

fibi +
∑

gjcj ±
∑

hijbicj =
∑

i

(fi −
∑

j

hijcj)bi +
∑

j

(gj +
∑

i

hijbi)cj .

The w-order of h is fixed, while w-orders of expressions in parenthesis on the right
have increased comparing with the w-orders of fi and gj . In this way we eventually
rewrite h in the form where w-initial forms do not cancel, thus, w-initial form of h
is a combination of w-initial forms of elements of I and J .

Step 4. Now we show that the ideal inw(I⊗1+1⊗J) is monomial free. Suppose
that a monomial XMY N can be represented as

(2) XMY N =
∑

fi inw1(bi) +
∑

gj inw2(cj),

where fi, gj ∈ k[X,Y ], bi ∈ I, cj ∈ J . Since inw1 I and inw2 J are monomial
free, they have points x0 ∈ (k̄∗)m, y0 ∈ (k̄∗)n respectively. Substituting the point
(x0, y0) ∈ (k̄∗)m+n to (2), we get a contradiction.

Step 5. Finally, we construct a valuation w on B
⊗

k C. First, consider a mono-
mial valuation w′ on k[X,Y ] defined by w′(Xi) = u(xi), i = 1, . . . ,m, w′(Yj) =
v(yj), j = 1, . . . , n. Let S be a semigroup generated by all the monomials aXMY N ,
a ∈ k, M ∈ Zm

≥0, N ∈ Zn
≥0. By Step 4 and Bergman’s Theorem 2.3, w′ can be

pushed forward to a valuation w on

k[X,Y ]/(I ⊗ 1 + 1⊗ J) ≃ k[X ]/I
⊗

k

k[Y ]/J ≃ B
⊗

k

C,

and w has all the required properties. �

The following two results were needed for the proof of Lemma 2.4. We use
the notation introduced in Step 2 of the proof of Lemma 2.4 and assume some
familiarity of the reader with Gröbner bases.

Lemma 2.5. Let I ⊂ k[X ] be an ideal, and {b1, . . . , bs} a Gröbner basis of I with
respect to some monomial ordering ≤ on k[X ]. Then {b1, . . . , bs} is a Gröbner basis
for I ⊗ 1 ⊂ k[X,Y ] with respect to any monomial ordering on k[X,Y ] that restricts
to the ordering ≤ on k[X ].

Proof. For any f =
∑

fi(X,Y )bi(X) write f =
∑

N (
∑

aj(X)bj(X))Y N as a poly-
nomial in Y . The leading monomial of f is present only in one of the expressions
(
∑

ajbj)Y
N , thus it is divisible by the leading monomial of one of the bj . �
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Corollary 2.6. Let I ⊂ k[X ] and J ⊂ k[Y ] be ideals. Then

(I ⊗ 1) ∩ (1⊗ J) = (I ⊗ 1) · (1 ⊗ J)

in k[X,Y ].

Proof. Fix a monomial ordering on k[X,Y ] and Gröbner bases {bi} for I and {cj}
for J . Take f ∈ (I ⊗ 1) ∩ (1 ⊗ J). By Lemma 2.5, we conclude that the leading
monomial aXMY N , a ∈ k, of f is divisible by the leading monomial of one of bi
and of one of cj . But the leading monomial of each bi is coprime to the leading
monomial of each cj , thus aX

MY N is divisible by the leading monomial of some of
the products bi(X)cj(Y ). This implies the corollary. �

Let us continue the proof of Theorem 2.1. Now we consider the general case of
the tensor product of A-algebras B and C, not necessarily finitely generated over
A. It is again possible to reduce to the case when A = k is a field, and this will be
assumed in the sequel. Let us recall the construction of the tensor product. Denote
by B• and C• the multiplicative semigroups of the rings B and C respectively, and
consider the direct product of semigroups S′ = B• × C•. Then the tensor product
B
⊗

k C can be identified with the quotient k[S′]/T of the semigroup algebra k[S′]
by the ideal T generated by all relations of the form

(ax, y)− a(x, y), (x, ay)− a(x, y),(3)

(x′ + x′′, y)−(x′, y)− (x′′, y), (x, y′ + y′′)− (x, y′)− (x, y′′),

where a ∈ k, x, x′, x′′ ∈ B, y, y′, y′′ ∈ C. Note that these expressions generate J
not only as an ideal of k[S′] but also as a vector space over k.

The valuations u and v of B and C are semigroup homomorphisms u : B• → R,
v : C• → R. The rule p(x, y) = u(x) + v(x) defines a semigroup homomorphism
p : S′ → R. Furthermore, we extend p to a pseudovaluation on the semigroup
algebra k[S′]. For f =

∑
ass ∈ k[S′], where as ∈ k, s ∈ S′, we set

p(f) = min
s∈S′

(u(as) + p(s))

(we could write v(as) instead of u(as)). Let S be a subsemigroup of k[S′] generated
by all the monomials a(x, y), a ∈ k, a 6= 0, (x, y) ∈ S. It is clear that p|S is a
semigroup homomorphism. Next we are going to show that there exists a valuation
w̄ on k[S′] that coincides with p on S and can be pushed forward to a valuation
w of the quotient k[S′]/T . It suffices only to check the conditions of Theorem 2.3,
i.e., if f ∈ T and s ∈ S is a monomial, then p(f − s) ≤ p(f). Represent f as a
k-linear combination

∑
airi of expressions ri of the form (3), and s as a(x0, y0),

where a ∈ k, x0 ∈ B, y0 ∈ C. Let x1, . . . , xm be all the elements of B and y1, . . . , yn
all the elements of C that are present in the monomials of ri. Consider the finitely
generated rings B′ = k[x0, x1, . . . , xm] and C′ = k[y0, y1, . . . , yn] and restrictions
u′ and v′ to B′ and C′ respectively. If we represent B′

⊗
k C

′ as a quotient of a
semigroup algebra k[(B′)• × (C′)•], then f can be considered as an element of the
corresponding ideal T ′ ⊂ k[(B′)• × (C′)•]. The pseudovaluation p also naturally
restricts to this semigroup algebra. On the other hand, we know by Lemma 2.4
that u′ and v′ extend simultaneously to B′

⊗
k C

′, thus, p achieves its minimum
on the monomials of f at least twice. This shows that Theorem 2.3 applies to p, S
and T . We get a valuation w on

k[S′]/T ≃ B
⊗

k

C

which is a simultaneous extension of u and v. This finishes the second proof of
Theorem 2.1.
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We are ready to describe the construction of universal valued fields. Now, let k
be a ring with a real valuation ν and R an arbitrary commutative k-algebra with
unity. Denote by V(R, k) the set of all real ring valuations of R that extend ν.

Theorem 2.7. Given k, R, and ν, there exist a k-algebra K and a valuation µ on
K such that µ|k = ν, and for any v ∈ V(R, k) there exists a morphism fv : R → K
of k-algebras such that the valuation v on R is induced by the valuation µ on K via
the morphism fv.

Proof. Consider a k-algebra

K =
⊗

v∈V(R,k)

R,

the restricted tensor product over k of the k-algebra R with itself, one copy for each
v ∈ V(R, k), see [Eisenbud, p. 713, Proposition A6.7b]. Let us show that there
exists a valuation µ on K that is a simultaneous extension of all the valuations v
of R. This is a consequence of Theorem 2.1 and Zorn’s lemma. Indeed, for each
subset V ⊆ V(R, k) we have a natural homomorphism of k-algebras

KV =
⊗

v∈V

R → K,

and, for U ⊆ V , a natural homomorphism KU → KV . Let V be the family of all
pairs (V, µV ), where V ⊆ V(R, k) and µV is a valuation on KV extending all the
valuations v of R, v ∈ V . The family V is nonempty since it contains all the pairs
({v}, v) for one-element subsets of V(R, k). It is also ordered by the following order
relation: (U, µU ) ≤ (V, µV ) if and only if U ⊆ V and (µV )|KU

= µU . Then, the
conditions of Zorn’s lemma are satisfied, thus V contains maximal elements. But
by Theorem 2.1 such a maximal element must coincide with (V(R, k), µ) for some
valuation µ on K. Now, let fv be the natural homomorphism

R →
⊗

v∈V(R,k)

R = K.

Then, µ induces the valuation v on R via fv. �

Remark 2.8. In the conditions of Theorem 2.7, the valuation µ on K naturally
extends to K/ home(µ), to its field of fractions Q(K/ home(µ)), and, further, to its

algebraic closure Q(K/ home(µ)). Thus, the universal k-algebra K can be assumed
to be a domain or even an algebraically closed field.

It would be interesting to give an explicit construction of universal valuation
fields under some reasonable restrictions on the algebra R. It may be that such a
universal valued field depends only on the field k and the valuation ν and works
for all k-algebras of a certain class. The next proposition gives an example of such
phenomenon.

Proposition 2.9. Let k be an algebraically closed trivially valued field of charac-
teristic 0, and k(x) = k(x1, . . . , xn) the field of rational functions in n variables

with coefficients in k. Let K = k(x)(tR) be the Hahn series field with coefficients
in the algebraic closure of k(x). Then K serves as a universal valued field for all
finitely generated k-algebras R of dimension d ≤ n.

Proof. Let R be a finitely generated k-algebra of dimension d ≤ n. If v is a valuation
of R over k, then the residue field k(v) of v has transcendence degree r ≤ d over k.

Thus k(v) and its algebraic closure can be embedded to k(x). On the other hand,

by [Kaplansky, Theorem 6], the field k(v)(tR) is the maximal valued field with the

residue field k(v) and the value group R. It follows that the valuation v is induced
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by a homomorphism from R to k(v)(tR). It remains to note that each field of the

form k(v)(tR) embeds to K. �

Proposition 2.9 suffers obviously from the lack of explicit description of the
algebraic closure k(x) of the field of rational functions in several variables.

3. Weak universality of the field of Puiseux series

As in the Introduction, we denote by K = k̄((tQ)) =
⋃

N≥1 k̄((t
1/N )) the field

of Puiseux series with coefficients in an algebraically closed field k̄, and by K ′ =
k̄((tR)) the field of Hahn series, i.e., the set of all formal sums

a(t) =
∑

m∈R

amtm,

where am ∈ k̄ and {m | am 6= 0} is a well-ordered subset of R. Let µ be the
natural valuation of K (K ′). The ring of Puiseux (respectively Hahn) series k̄[[tQ]]
(resp. k̄[[tR]]) is the subring of K (resp. K ′) consisting of the series of nonnegative
valuation. It is known that if k̄ has characteristic 0, then the field K of Puiseux
series is algebraically closed ([Cohn]); if k̄ = C is the field of complex numbers, this
is the classical Newton-Puiseux Theorem. The field K ′ of Hahn series is always
algebraically closed ([MacLane, Theorem 1]).

Theorem 3.1. Let R be a complete Noetherian local ring containing a field k iso-
morphic to the residue field of R. Let v be a local valuation of R and x1, . . . , xn a
finite collection of elements of the maximal ideal of R. Then there exists a homo-
morphism f : R → O′ = k̄[[tR]] to the ring of Hahn series with coefficients in k̄ such
that for all i = 1, . . . , n, v(xi) = µ(f(xi)). Moreover, if the characteristic of k is 0,
the elements x1, . . . , xn analytically generate R, and v(xi) ∈ Q for all i = 1, . . . , n,
then there exists a homomorphism f : R → O = k̄[[tQ]] to the ring of Puiseux series
with coefficients in k̄ with the same property.

Proof. Step 1. First we reduce to the case when k = k̄ is algebraically closed, R is
a domain, and do some other preliminary reductions. Consider the tensor product
R = R

⊗
k k̄. Note that R is integral over R, thus, there exists a prime ideal q ⊂ R

such that q ∩ R = p, where p = home(v). The quotient R/q remains integral over
R/p. Hence the local valuation v of R/p extends to a valuation v̄ of R/q, and,
as follows from the method of Newton polygon (see [Bourbaki, Chapitre VI, §4,
exercise 11]), v̄ is nonnegative on R/q. Passing again to the quotient by home(v̄),
if necessary, we can assume that home(v̄) = {0}. Let n be the prime ideal of R/q
where v̄ is positive. Since n ∩ R/p = m is the maximal ideal of R/p, the ideal n is
also maximal. Then, consider the localization (R/q)n and its completion R′ with
respect to n. The valuation v̄ extends canonically to a local valuation v′ of R′ (see,
e.g., [PPS, Lemma 5.16]). Finally, passing to the quotient of R′ by home(v′), we
can assume that R′ is a domain and home(v′) = {0}.

Recall that the rational rank of a valuation v on R is the dimension over Q of
the Q-vector subspace of R generated by the image of v. Let r′ be the rational
rank of v and d the Krull dimension of R. It follows from the Abhyankar inequality
([Vaquié, Théorème 9.2]) that r′ ≤ d. If r is the dimension of the Q-vector subspace
of R generated by v(x1), . . . , v(xn), then we have r ≤ r′ ≤ d. By the Cohen
structure theorem [Eisenbud, Theorem 7.7], the ring R is a quotient of the ring
k[[X1, . . . , XN ]] of formal power series. Enlarging the finite set {x1, . . . , xn}, if
necessary, we can assume that the elements x1, . . . , xn analytically generate R, i.e.,
N = n and a surjection from k[[X1, . . . , Xn]] to R can be chosen so that Xi 7→ xi,
i = 1, . . . , n. Clearly, there is no loss of generality if we also assume that none of
xi is 0.
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In the reduction steps described above, we performed the following actions with
the ring R: we took quotients, considered the tensor product with k̄, localized
at a maximal ideal, and took a completion. These actions could only decrease
the dimension of R. Thus, if the elements x1, . . . , xn analytically generate the
ring R at the beginning, their images in R′ form a system of parameters for R′.
Then, a system of analytical generators for R′ can be obtained from x1, . . . , xn by
adjoining only a finite number of elements x′

1, . . . , x
′
l ∈ R′ integral over the subring

analytically generated by x1, . . . , xn. It again follows from the method of Newton
polygon that if v takes only rational values on xi, then it also takes only rational
values on x′

j , j = 1, . . . , l. This shows that the reduction steps are applicable also in
the “moreover” part of the theorem, i.e., we can assume that R is a local complete
Noetherian domain, k is an algebraically closed subfield of R of characteristic 0 and
isomorphic to the residue field of R, x1, . . . , xn analytically generate R, and v takes
only rational values on xi.

Step 2. Now, we reduce to the case r = d, where r is the dimension of the
Q-vector subspace of R generated by v(x1), . . . , v(xn), d = dimR. Suppose that
r < d. Then, represent R as a quotient k[[X1, . . . , Xn]]/I, where I is a prime
ideal of k[[X1, . . . , Xn]]. The valuation v induces a valuation of k[[X1, . . . , Xn]]; by
abuse of notation, we denote this induced valuation also by v. Let w be the vector
(w1, . . . , wn) = (v(x1), . . . , v(xn)) ∈ Rn. The proof of the following elementary
lemma is left to the reader.

Lemma 3.2. Let w = (w1, . . . , wn) ∈ Rn be a vector such that the real numbers
w1, . . . , wn generate a Q-vector subspace of R of dimension r over Q. Then there
exists a unique minimal rational vector subspace LQ(w) of R

n ( rational means that
LQ(w) is defined by linear equations with rational coefficients) such that w ∈ LQ(w).
The dimension of LQ(w) equals r.

By general properties of valuations, the initial ideal inw I is monomial free. Con-
sider the local Gröbner fan of the ideal I ([BT]). There exists a rational polyhedral
cone σ ⊂ Rn such that w is contained in the relative interior σ̊ of σ and for all
w′ ∈ σ̊, inw′ I = inw I. The intersection σ ∩ LQ(w) is also a rational polyhedral
cone. Let us fix a vector w′ ∈ σ̊ ∩ LQ(w) with positive integral coordinates. Note
that the initial ideal inw′ I = inw I is generated by w-homogeneous polynomials.
Then, let J = inw′ I ∩ k[x1, . . . , xn] be the corresponding ideal of the polynomial
ring. We have

k[[x1, . . . , xn]]/ inw′ I ≃ (k[x1, . . . , xn]/J) ,̂

where the completion is taken with respect to the maximal ideal (x1, . . . , xn). Thus,
by [AM, Corollary 11.19],

dim k[[x1, . . . , xn]]/ inw′ I = dim k[x1, . . . , xn]/J.

But by the standard flat degeneration argument (see, e.g., [PPS, Lemma 11.10]),
dim k[[x1, . . . , xn]]/ inw′ I = dimR, and, since I is supposed to be prime, all minimal
associated primes of inw′ I have the same depth d = dimR. We conclude that
dim k[x1, . . . , xn]/J = d, and, moreover, all minimal associated primes of J also
have depth d.

Since the ideal J is monomial free, it has a point x0 ∈ (k∗)n. Choose an irre-
ducible component Z of the zero set of J such that x0 ∈ Z. Let γ1, . . . , γr be a
basis of the Q-vector subspace of R generated by w1, . . . , wn. Write

wi =
r∑

j=1

wijγj,

where i = 1, . . . , n, wij ∈ Q. Rescaling γj if necessary, we can even suppose that
wij are integral. By our assumptions, the rank of the matrix (wij)

n,m
i=1,j=1 is r. Since
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the ideal J is generated by w-homogeneous polynomials, together with the point
x0 = (x0

1, . . . , x
0
n) the variety Z contains also all the points

(tw11

1 · · · tw1r

r x0
1, . . . , t

wn1

1 · · · twnr

r x0
n), (t1, . . . , tr) ∈ kr.

Thus we can make some r of the coordinates of x0, say, x0
1, . . . , x

0
r , to be equal

to 1. The dimension of the linear affine space H : x1 = · · · = xr = 1 is n − r,
and the dimension of Z is d > r. Hence dimH ∩ Z ≥ 1, and there exists at
least one point y0 6= x0, y0 ∈ H ∩ Z. Take a polynomial f̃(xr+1, . . . , xn) such

that f̃(x0
r+1, . . . , x

0
n) = 0, f̃(y0r+1, . . . , x

0
n) 6= 0. Homogenizing f̃ with respect to

the weight vector w′ we get a w′-homogeneous polynomial f such that f(x0) = 0,
f(y0) 6= 0. By construction, f is also w-homogeneous, not a monomial, and not
contained in any of the minimal associated primes of inw I.

Lemma 3.3. Let I, w, and f be as above. Then, in the ring k[[x1, . . . , xn]],

inw(I + (f)) = inw I + (f).

Proof. Consider an arbitrary fg + h ∈ (f) + I, h ∈ I, g ∈ k[[x1, . . . , xn]]. If
f · inw g + inw h 6= 0, then it is the w-initial form of fg + h and is contained in
inw I +(f). Assume that f · inw g+ inw h = 0. Since f is not a zero divisor modulo
inw I, we have inw g ∈ inw I. Let g̃ ∈ I be such that inw g̃ = inw g. Then fg + h
has the same initial form as

fg ± f g̃ + h = fg′ + h′,

where h′ ∈ I and g′ has w-order strictly greater than g. Repeating this argument
we come to the situation when the initial forms of fg′ and h′ do not cancel, and
thus inw(fg + h) ∈ inw I + (f). This proves the inclusion

inw(I + (f)) ⊆ inw I + (f).

The inverse inclusion is clear. �

By construction, the ideal inw(I + (f)) = inw I + (f) is monomial free. By
Bergman’s Theorem 2.3, the monomial valuation v′ on k[[x1, . . . , xn]] defined by
v′(xi) = wi, i = 1, . . . , n, can be transformed to a valuation v̄ such that v̄(xi) = wi,
i = 1, . . . , n, and v̄|I+(f) = +∞. Therefore we can pass to the ring R′ = R/(f),
dimR′ = d− 1.

Step 3. It remains to consider the case d = dimR = r. The rational rank r′ of
the valuation v is not greater than d by Abhyankar inequality, so in this case r = r′.
Choose a system of parameters y1, . . . , yd for R such that v1 = v(y1), . . ., vd = v(yd)
are linearly independent over Q. The ring R is integral over k[[y1, . . . , yd]].

Embed k[[y1, . . . , yd]] to the ring of Hahn series O′ ⊂ k((tR)) by sending yi to
tvi , i = 1, . . . , d. The natural valuation µ of k((tR)) is an extension of v from
k[[y1, . . . , yd]] via this embedding. By [Lang, Chapter XII, §3], every extension of
v from k[[y1, . . . , yd]] to R can be induced by an embedding of R to

Q(k[[y1, . . . , yd]])v,

i.e., to the algebraic closure of the completion with respect to v of the field of
fractions of k[[y1, . . . , yd]]. Since k((tR)) is algebraically closed and complete, we
conclude that there exists an embedding of R to k((tR)) such that µ induces v.
Moreover, the method of Newton polygon shows that the image of R is contained
in O′.

Finally, assume that v takes only rational values on xi and the field k has char-
acteristic 0. This implies, in particular, that r = d = 1. This time we embed
k[[y]] = k[[y1]] to the ring of Puiseux series O by sending y to tv1 . As above, we get
an embedding of R to k((tR)) inducing the valuation v, but, since the field k((tQ))
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is also algebraically closed, the image is contained in k((tQ)) and, by the method
of Newton polygon, in O. �

The following theorem shows weak universality of the field of Hahn series with
respect to valuations on finitely generated algebras.

Theorem 3.4. Let R be a finitely generated algebra over a field k. Let v be a
valuation of R and x1, . . . , xn a finite collection of elements of R. Then there exists
a homomorphism f : R → k̄((tR)) to the field of Hahn series with coefficients in k̄
such that for all i = 1, . . . , n, v(xi) = µ(f(xi)). Moreover, if the characteristic of k
is 0, the elements x1, . . . , xn generate R over k, and v(xi) ∈ Q for all i = 1, . . . , n,
then there exists a homomorphism f : R → k̄((tQ)) to the field of Puiseux series
with coefficients in k̄ with the same property.

Proof. This theorem follows from the results on lifting points in tropical varieties,
see, e.g., [JMM]. Alternatively, it can be proven by an argument parallel to the
proof of Theorem 3.1. �

4. Lifting points in local tropical varieties

In this section we recall briefly the definition of local tropicalization following
[PPS] and deduce the lifting points property of local tropical varieties from The-
orem 3.1. Let M be a finitely generated free abelian group and MR the vector
space M

⊗
Z R. For rational polyhedral cones σ̌ in MR, we consider additive semi-

groups Γ of the form σ̌ ∩ M or, more generally, finitely generated subsemigroups
(with neutral element) of σ̌ ∩M such that Sat(Γ), the saturation of Γ (see [PPS,
Definition 2.10]), equals σ̌ ∩M . Each semigroup homomorphism from Γ to R lifts
uniquely to a group homomorphism from M to R. Thus we can identify the group
Homsg(Γ,R) of all semigroup homomorphisms from Γ to R with the dual space
of MR; we denote this dual space by NR, and by N the dual lattice of M . The
semigroup homomorphisms from Γ to the extended real line R = R∪ {+∞} live in
a certain partial compactification of NR that is denoted by L(σ,N) in [PPS, Sec-
tion 4] and called the linear variety corresponding to σ and N ; here σ is the dual
cone of σ̌. The cone σ corresponds to nonnegative homomorphisms from Γ to R;
the nonnegative homomorphisms from Γ to R form a certain subspace of L(σ,N)
denoted σ. We denote by σ◦ the interior of σ◦.

Now, let R be a local ring with the maximal ideal m. Let V≥0(R) be the set of
all nonnegative real valuations of R and V>0(R) the set of all local valuations of
R, i.e., valuations that are nonnegative on R and positive on the maximal ideal m.
Let γ : Γ → R be a homomorphism from Γ to the multiplicative semigroup of R
and assume that none of the elements of γ−1(m) is invertible in Γ. Then, for each
v ∈ V≥0 (resp. v ∈ V>0), the composition v ◦ γ is an element of σ (resp. σ◦). In
this way we get a map

Trop: V≥0(R) → σ (resp. Trop: V>0(R) → σ◦),

which we call the tropicalization map.

Definition 4.1. The local nonnegative tropicalization of the morphism γ, denoted
Trop≥0(γ), is the image of V≥0(R) in σ under the tropicalization map Trop. The
local positive tropicalization, denoted Trop>0(γ), is the closure in σ◦ of the image
of V>0(R) under the tropicalization map.

Next we restrict to local rings R of special type. Suppose that the cone σ̌ is
strictly convex, in particular, the only invertible element of Γ is 0. Let k be a field
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and consider all possible formal series
∑

m∈Γ

amχm,

where am ∈ k. Any two such series can be added and multiplied in a natural way,
in particular, χm · χm′

= χm+m′

. These series form a complete Noetherian local
ring k[[Γ]] called the ring of formal power series over Γ, see [PPS, Section 8]. There
is a natural semigroup homomorphism Γ → k[[Γ]] defined by Γ ∋ m 7→ χm, the
elements χm ∈ k[[Γ]] being called the monomials. If I ⊂ k[[Γ]] is an ideal, let γ be
the composition of the natural maps

Γ → k[[Γ]] → R = k[[Γ]]/I.

Now, we can consider the nonnegative (resp. positive) tropicalization Trop≥0(γ)
(resp. Trop>0(γ)) of γ. In the situation just described, we denote also Trop≥0(γ) =
Trop≥0(I) (Trop>0(γ) = Trop>0(I)) and call it the local nonnegative (resp. posi-
tive) tropicalization of the ideal I.

It is proven in [PPS, Theorem 11.9] that both nonnegative Trop≥0(I) ⊆ σ and
positive Trop>0(I) ⊆ σ◦ tropicalizations are rational PL conical subspaces of real
dimension d equal to the Krull dimension of R. This means, in particular, that the
part of Trop≥0(I) contained in NR is a support of a rational (with respect to the
lattice N) polyhedral fan. The nonnegative tropicalization Trop≥0(I) is stratified
by the positive tropicalizations Trop>0(Iτ ) of certain truncations of the ring R, see
[PPS, Section 12, in particular Lemma 12.9] for the details.

Theorem 4.2 (Lifting points lemma for local tropical varieties). Let I ⊂ k[[Γ]] be
an ideal. If u ∈ Trop>0(I), then there exists a homomorphism f : R = k[[Γ]]/I →
k̄[[tR]] to the ring of Hahn series with coefficients in k̄ such that u = Trop(µ ◦ f),
where µ is the natural valuation of k̄[[tR]]. Moreover, if the field k has characteristic
0 and the point u is rational, then there exists a homomorphism f : R → k̄[[tQ]] to
the ring of Puiseux series with the same property.

Proof. By [PPS, Theorem 11.2], the image of V>0(R) in σ◦ is closed under the
tropicalization map, hence there exists v ∈ V>0(R) such that u = Trop(v). If
u ∈ Trop>0(I) ⊆ σ◦ belongs to some stratum of σ at infinity, then v is induced by
a valuation on a quotient R/J of the ring R, where R/J also has the form k[[Γ′]] for
some semigroup Γ′, see [PPS, the end of Section 8]. Therefore it suffices to consider
the case u ∈ NR. Choose monomials x1, . . . , xn ∈ Γ which generate the semigroup
Γ. A semigroup homomorphism from Γ to R is uniquely determined by the images
of x1, . . . , xn. By Theorem 3.1 there exists a homomorphism f : R → k̄[[tR]] such
that µ(f(xi)) = u(xi) for all i = 1, . . . , n. If the characteristic of k is 0 and u is
rational, a homomorphism f can be chosen so that the target ring is k̄[[tQ]]. This
f is the required homomorphism. �

Corollary 4.3. Let I ⊂ k[[Γ]] be an ideal. The following three definitions of the
local positive tropicalization of I are equivalent:

1) Trop>0(I) is the image of V>0(k[[Γ]]/I) under the tropicalization map;
2) Trop>0(I) is the set of all w ∈ σ◦ such that the initial ideal inw I is mono-

mial free;
3) Trop>0(I) is the set {Trop(µ ◦ f) | f : R → k̄[[tR]]}, where f runs over all

local homomorphisms from R = k[[Γ]]/I to k̄[[tR]].

If the field k has characteristic 0, then Trop>0(I) can also be described as

3′) the closure of the set {Trop(µ ◦ f) | f : R → k̄[[tQ]]} in σ◦, where f runs
over all local homomorphisms from R to k̄[[tQ]].
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Proof. Equivalence of 1) and 2) is proven in [PPS, Theorem 11.2]. Equivalence of
1) and 3), and, if the characteristic of k is 0, of 1) and 3′), follows from Theorem 4.2
and from the fact that the local positive tropicalization defined by 1) is a rational
conical PL space, [PPS, Theorem 11.9]. �
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