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Parity and Diagram–Valued Invariants

The notion of parity, first introduced in 2009, allowed not only to
strengthen invariants and create new ones, but also to create
picture–valued invariants. That means that the invariant object is valued
in graphs, not in numbers.

A perfect example of an invariant of that kind is parity bracket which
discovery led, for example, to the proof of non-triviality of free knots.
The bracket is defined in a combinatorial way using smoothings. The
bracket invariance leads to the following equality:

[K ] = K ,

where K on the left means a knot, and on the right — one particular
diagram of that knot.
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The “cat principle”

The existence of such invariants means that in some cases it is possible to
obtain some important information about a knot looking at its single
diagram. For example, the following principle often holds:

The “cat principle” states that if a diagram is complicated enough, it
realises itself as a subdiagram in any other diagram of the same knot.

Figure: Cats
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The Central Result

The main result described in this talk realises this “picture–valued” goal
for another important property of knots: their sliceness. That is, looking
at a diagram of a knot with certain properties (namely, an odd diagram)
one can understand, whether this knot is slice or not.
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Basic Definitions

Recall that two classical knots K1,K2 are called concordant if they can be
connected with a cylinder in R3 × [0, 1] so that K1 lies in R3 × {0} and K2

lies in R3 × {1}.

This notion can be easily expanded to deal with free knots. Saying “free
knot” we mean an equivalence class of decorated 4-valent graphs (with
one unicursal component) modulo Reidemeister moves.

Definition

Two free knots Γ1, Γ2 are called cobordant if there exists a spanning
surface — 2-complex being a continuous image f (C ) of a cylinder
C = S1 × [0, 1] such that Γ1 = f (S1 × {0}) and Γ2 = f (S1 × {1}) and in
the neighbourhood of every vertex of Γi the image of the corresponding
boundary component lies in the union of the opposite half-edges.
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Slice Knots and the Statement of the Problem

Definition

A free knot is called slice if it is cobordant to the trivial knot.

In other words, a slice knot can be spanned by a disc.

The main question is: how one can understand whether a knot is slice
looking at its diagram?
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Example

Figure: The first found example of a non-slice free knot
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The Main Theorem on Cobordisms

The following theorem gives an answer to the sliceness problem for odd
free knots.

Theorem (V.M.)

If a chord diagram of a free knot is odd, it is slice if and only there exists a
pairing of its chords with no intersections.

This theorem translates a difficult topological question of sliceness to a
purely combinatorial problem of chord pairing for a fairly large family of
free knots.
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Example 1

Figure: Correct pairing yields sliceness

D.A. Fedoseev, V.O. Manturov Parity and Cobordisms of Virtual Knots July, 3-7, 2017 10 / 26



Example 2
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Figure: This free knot is not slice
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The Notion of a 2-Knot

Definition

A 2-knot (resp. an n-component 2-link) is a smooth embedding in
general position of a 2-sphere S2 (resp. disjoint union of n spheres) into
R4 or S4 up to isotopy.

If one takes Sg instead of S2, one obtains a surface knot (or surface link in
case of many components).
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2-Knots Diagrams: in R3

Definition

A diagram of a 2-knot K in R3 is a projection in a general position of K
in R4 to a subspace R3.

Two diagrams represent the same knot if and only if they can be related
by a finite sequence of Roseman moves.

R1

R2

R3

R4

R5

R6

R7

Figure: Roseman Moves
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2-Knots Diagrams: Spherical

Definition

A spherical diagram (or Gauss diagram) is a 2-complex consisting of a
sphere S and a set D of marked curves on it such that:

1 Every curve is either closed or ends with a cusp, the number of cusps
is finite;

2 Every curve of the set D is paired with exactly one curve of that set,
one of the paired curves is marked as upper, both curves are oriented
(marked with arrows);

3 Two curves ending in the same cusp are paired and both arrows either
look towards the cusp or away from it;

4 If two curves intersect, the curves paired with them intersect as well
(thus a triple point appears on the sphere S three times).
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Roseman Moves on Spherical Diagrams

Roseman moves have natural analogs for spherical diagrams.
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Figure: Roseman Moves for Spherical Diagrams
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Parity Axioms

Consider the following system of axioms:

1 Continuity axiom. Parity is constant along double lines.
2 Loop axiom. A double line being an edge of a cylinder over a loop is

even.
3 Bigon axiom. The sum of parities of two double lines being the edges

of a cylinder over a bigon equals 0 mod 2.
4 Triangle axiom. The sum of parities of three double lines being the

edges of a cylinder over a triangle equals 0 mod 2.
5 Correspondence axiom. The parities of the corresponding boundary

double points are the same.

We can define parity in the following way:

Definition

Let L be a class of 2-links in R3, and let A be the set of double line of
their diagrams. A mapping P : A→ Z2 is called parity if it satisfies the
axioms 1–5.
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Smoothings

In 1-dimensional knot theory smoothing of a crossing means cutting out a
crossing with its small neighbourhood and reglueing two pairs of half-edges
in one of the possible two ways:

Figure: Smoothings of a crossing
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Smoothings (cont.)

In 2-dimensional case not crossings, but double lines are smoothed. That
is, locally one can think of a 2-dimensional smoothing as a 1-dimensional
smoothing on a transversal section, multiplied by an interval. The trick is
to define smoothing of a whole double line (or a family of those) in a
compatible way. Here we present one approach, using spherical diagrams.

Consider a pair of paired curves γ, γ′ on a spherical diagram of a knot.
Cut the diagram along those lines. The resulting multi-component
complex has four boundary components: γ1, γ

′
1 on the sphere, and γ2, γ

′
2

on the cut out pieces.

Now we glue those curves back together (respecting their orientation and
intersecting curves) following the rule: non-prime curve must be glued to a
prime one.
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Smoothings and Triple Points

To complete our smoothing procedure we need to understand, what
happens to the triple points the smoothed line goes through.
It is easy to see that the reglueing of γ’s naturally induces a
(1-dimensional) smoothing near the third preimage of a triple point
involved. The type of this smoothing exactly corresponds to the choice of
pairing between γi and γ′j .

That procedure defines a smoothing of a double line. If we need to
smoothen a set of double lines, we should do it one by one in some order.
Note, that we don’t claim that the result is independent of the order of
smoothings. It may well be true but wasn’t studied in detail yet.
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Smoothing Lemma

There are two ways to smoothen a double line — just like in the
1-dimensional case. In case of a spherical diagram one of those to
smoothings always produces an additional connected component, while the
other one transforms the sphere into a sphere again (with a different set of
curves).
Every smoothing reduces the number of curves on the spherical diagram.
Thus, smoothing all double lines of a diagram (in any order) and every
time choosing the smoothing that preserves the number of connected
components we come to an empty spherical diagram. Thus we get the
following lemma:

Lemma (D.F.)

For every free 2-knot diagram there exists a smoothing yielding a trivial
knot.
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Proof of the Theorem

Now we are ready to prove the main theorem.

One implication stated is fairly obvious: if a chord pairing exists, this
pairing exactly describes the double lines of the spanning disc. Thus the
knot is indeed slice.

Now we come to the tough part: if a knot with an odd chord diagram is
slice, why there exists a correct chord pairing?
Consider an odd diagram K and spanning disc D. This complex may be
regarded as a 2-knot with boundary.
This complex has double lines of two types: “inner” double lines and
double lines ending at the boundary. Note that the smoothing process,
described above, can be verbatim generalised to the case of a knot with
boundary for inner double lines.
Let us smoothen all inner double lines.
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Proof of the Theorem (cont.)

Due to the Smoothing Lemma the Gauss diagram of the resulting knot is
a disc with some curves with their ends on the boundary. Since the
original knot diagram K was odd in Gaussian sense, those double lines are
odd as well (since the diagram didn’t change in a small neighbourhood of
its boundary).

Therefore, we have neither cusps nor triple points on the resulting diagram.

That means that every double line begins and ends on the knot boundary.
So the crossings of the diagram K are paired — without intersections (due
to the absence of triple points). Thus the claim is verified.
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Some Open Problems and Work in Progress I

How one can construct an invariant parity bracket for 2-knots, surface
knots, links?

There are different ways to define a smoothing of a double line.
Which of them produce a reasonable 2-complex? How can they be
used?

Consider two knot diagrams. Is there a way to say if those free knots
are cobordant looking just at their diagrams? For some particular
classes of diagrams, maybe?

How can one calculate a slice genus looking at a decorated 4-valent
graph?

Let us call a knot elementary slice if it can be spanned by a disc
without cusps and triple points. In the same way one can define an
elementary slice genus.
Is it true that slice genus of a knot is bounded by g if and only if the
elementary slice genus of this knot is bounded by g?
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Some Open Problems and Work in Progress II

Smoothing lemma generalisation: is it true that every knot of genus g
can be smoothened to a trivial knot of genus at most g?

Is it possible to get a nice criterion of sliceness for odd diagrams —
say in the language of incidence matrices?

Is it true (again, possibly for some family of diagrams) that if two free
knots are cobordant, they are cobordant with no cusps and triple
points? This question relates “dynamic” and “static” problems.
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