Equivalence of nice Heegaard diagrams and combinatorial Floer homology

Jiajun Wang

1LMAM, School of Mathematical Sciences
Peking University, P. R. China

4th Russian-Chinese Conference on Knot Theory and Related Topics
Bauman Moscow State Technical University
Moscow, July 6th, 2017
Outline of talk

1. From Morse homology to Heegaard Floer homology
2. Combinatorial descriptions
3. Chain complex
4. Equivalence and invariance
A Morse function on a manifold is a real-valued function that looks like

\[f(x_1, \cdots, x_n) = -x_1^2 - \cdots - x_i^2 + x_{i+1}^2 + \cdots + x_n^2 \]

near a critical point under some coordinate system.
A Morse function on the torus
Morse homology of the torus

So we have
\[\partial a = \partial b = \partial c = \partial d = 0 \]

And the homology is
\[H_n^{\text{Morse}}(T^2) = \begin{cases} \mathbb{Z} & n = 0, 2 \\ \mathbb{Z} \oplus \mathbb{Z} & n = 1 \end{cases} \]
Lagrangian intersection Floer homology

Given a symplectic manifold \((M, \omega)\) and two compact Lagrangian submanifolds \(L_0\) and \(L_1\), the Floer homology is roughly the Morse theory for the following action functional on the path space

\[
A : \widetilde{P}(L_0, L_1) \to \mathbb{R}, \quad A(\gamma, [u]) = \int u^* \omega
\]

The critical points of \(A\) are constant paths, or \(L_0 \cap L_1\). The Euler-Lagrange equation is the Cauchy-Riemann equation and the gradient flow lines are pseudo-holomorphic curves. The Floer homology \(HF(L_0, L_1)\) is generated by \(L_0 \cap L_1\) with the differential counting dimension one flow lines.

Give 3-manifold \(Y\) with Heegaard splitting along a surface \(\Sigma_g\), we can define a Lagrangian intersection Floer homology as follows: the space of flat connections on \(\Sigma_g\) is a symplectic manifold of dimension \(6g - 6\), and the flat connections on \(\Sigma_g\) that extends over each of the two handlebodies form a Lagrangian submanifold.
Lagrangian intersection Floer homology

Given a symplectic manifold \((M, \omega)\) and two compact Lagrangian submanifolds \(L_0\) and \(L_1\), the Floer homology is roughly the Morse theory for the following action functional on the path space

\[
A : \tilde{P}(L_0, L_1) \to \mathbb{R}, \quad A(\gamma, [u]) = \int u^* \omega
\]

The critical points of \(A\) are constant paths, or \(L_0 \cap L_1\). The Euler-Lagrange equation is the Cauchy-Riemann equation and the gradient flow lines are pseudo-holomorphic curves. The Floer homology \(HF(L_0, L_1)\) is generated by \(L_0 \cap L_1\) with the differential counting dimension one flow lines.

Given 3-manifold \(Y\) with Heegaard splitting along a surface \(\Sigma_g\), we can define a Lagrangian intersection Floer homology as follows: the space of flat connections on \(\Sigma_g\) is a symplectic manifold of dimension \(6g - 6\), and the flat connections on \(\Sigma_g\) that extends over each of the two handlebodies form a Lagrangian submanifold.
Lagrangian intersection Floer homology

Given a symplectic manifold \((M, \omega)\) and two compact Lagrangian submanifolds \(L_0\) and \(L_1\), the Floer homology is roughly the Morse theory for the following action functional on the path space

\[
A: \tilde{\mathcal{P}}(L_0, L_1) \to \mathbb{R}, \quad A(\gamma, [u]) = \int u^* \omega
\]

The critical points of \(A\) are constant paths, or \(L_0 \cap L_1\). The Euler-Lagrange equation is the Cauchy-Riemann equation and the gradient flow lines are pseudo-holomorphic curves. The Floer homology \(HF(L_0, L_1)\) is generated by \(L_0 \cap L_1\) with the differential counting dimension one flow lines.

Give 3-manifold \(Y\) with Heegaard splitting along a surface \(\Sigma_g\), we can define a Lagrangian intersection Floer homology as follows: the space of flat connections on \(\Sigma_g\) is a symplectic manifold of dimension \(6g - 6\), and the flat connections on \(\Sigma_g\) that extends over each of the two handlebodies form a Lagrangian submanifold.
Example of Lagrangian Floer homology

So we have

$$\partial a = \partial c = b$$

and its homology is $\textit{HF}(L_0, L_1) \cong \mathbb{Z}$, generated by $a + c$ or $a - c$.
Heegaard splittings

Every closed orientable three-manifold Y has an embedded surface which splits Y into two handlebodies. Such a decomposition is called a Heegaard splitting.

The following is the standard genus one Heegaard splitting for S^3:

A Heegaard splitting is characterized by the Heegaard surface, together two sets of curves bounding disks in the two handlebodies. The above one is denoted by (T_1, A, B).
A genus two Heegaard splitting of the three-sphere
Heegaard Floer homology

Given a three-manifold Y with a Heegaard splitting $\mathcal{H} = (\Sigma, \alpha, \beta, w)$, where $w \in \Sigma \setminus (\alpha \cup \beta)$ is a reference point. The $\text{Sym}^g(\Sigma - w)$ is a symplectic manifold, together with two Lagrangian tori

$$T_\alpha = \alpha_1 \times \cdots \times \alpha_g, \quad T_\beta = \beta_1 \times \cdots \times \beta_g$$

The Heegaard Floer homology $\widehat{HF}(Y)$ is defined as follows: the generators consist of $T_\alpha \cap T_\beta$, or equivalently,

$$x = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$$

and the differential counts for index one holo disk from x to y.

For a null homologous knot $K \subset Y$, $\mathcal{H} = (\Sigma, \alpha, \beta, w, z)$. $\widehat{HFK}(Y, K)$ is defined similarly, but in $\text{Sym}^g(\Sigma - w - z)$.
Heegaard Floer homology

Given a three-manifold Y with a Heegaard splitting $\mathcal{H} = (\Sigma, \alpha, \beta, w)$, where $w \in \Sigma \setminus (\alpha \cup \beta)$ is a reference point. The $\text{Sym}^g(\Sigma - w)$ is a symplectic manifold, together with two Lagrangian tori

$$T_\alpha = \alpha_1 \times \cdots \times \alpha_g, \quad T_\beta = \beta_1 \times \cdots \times \beta_g$$

The Heegaard Floer homology $\widehat{HF}(Y)$ is defined as follows: the generators consist of $T_\alpha \cap T_\beta$, or equivalently,

$$x = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$$

and the differential counts for index one holo disk from x to y.

For a null homologous knot $K \subset Y$, $\mathcal{H} = (\Sigma, \alpha, \beta, w, z)$. $\widehat{HFK}(Y, K)$ is defined similarly, but in $\text{Sym}^g(\Sigma - w - z)$.
Heegaard Floer homology

Given a three-manifold Y with a Heegaard splitting $\mathcal{H} = (\Sigma, \alpha, \beta, w)$, where $w \in \Sigma \setminus (\alpha \cup \beta)$ is a reference point. The $\text{Sym}^g(\Sigma - w)$ is a symplectic manifold, together with two Lagrangian tori

$$T_\alpha = \alpha_1 \times \cdots \times \alpha_g, \quad T_\beta = \beta_1 \times \cdots \times \beta_g$$

The Heegaard Floer homology $\widehat{HF}(Y)$ is defined as follows: the generators consist of $T_\alpha \cap T_\beta$, or equivalently,

$$x = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$$

and the differential counts for index one holo disk from x to y.

For a null homologous knot $K \subset Y$, $\mathcal{H} = (\Sigma, \alpha, \beta, w, z)$. $\widehat{HFK}(Y, K)$ is defined similarly, but in $\text{Sym}^g(\Sigma - w - z)$.
A genus two Heegaard splitting of the three-sphere
The Floer chain complex depends on the complex structure

To define holomorphic disks, we choose a complex structure on Σ. The chain complex may be different when the complex structure varies (though the quasi-isomorphism type does not change).

When $a < b$, we have

Note that the case $a = b$ is NOT generic.

Thus we see that the chain complex depends on the complex structure.
The Floer chain complex depends on the complex structure.

To define holomorphic disks, we choose a complex structure on Σ. The chain complex may be different when the complex structure varies (though the quasi-isomorphism type does not change).

When $a > b$, we have

\[x_1y_1 \rightarrow x_3y_1 \rightarrow x_1y_3 \rightarrow x_3y_3 \]
\[x_2y_1 \rightarrow x_1y_2 \rightarrow x_3y_2 \rightarrow x_2y_3 \]
\[x_2y_2 \rightarrow x_2y_2 \]

Note that the case $a = b$ is NOT generic.

Thus we see that the chain complex depends on the complex structure.
The Floer chain complex depends on the complex structure.

To define holomorphic disks, we choose a complex structure on Σ. The chain complex may be different when the complex structure varies (though the quasi-isomorphism type does not change).

When $a > b$, we have

Note that the case $a = b$ is NOT generic.
Thus we see that the chain complex depends on the complex structure.
The Poincaré homology sphere $\Sigma(2, 3, 5)$

#Generators: 21, # Differentials: ???
A Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, w)$ is **nice** if every region is a bigon or square, except the (preferred) region containing w, which is a polygon. Regions are connected components of $\Sigma \setminus (\alpha \cup \beta)$.

Generators: $x = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$

(σ's are elements in S_g.)

There are two types of differentials:
Definition

A Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, w)$ is **nice** if every region is a bigon or square, except the (preferred) region containing w, which is a polygon. Regions are connected components of $\Sigma \setminus (\alpha \cup \beta)$.

Generators: $x = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$

(σ’s are elements in S_g.)

There are two types of differentials:
Combinatorial Floer homology

Definition

A Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, w)$ is **nice** if every region is a bigon or square, except the (preferred) region containing w, which is a polygon. Regions are connected components of $\Sigma \setminus (\alpha \cup \beta)$.

Generators: $x = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$
(σ's are elements in S_g.)

There are two types of differentials:

$$x = (x_1, x_2, \cdots, x_i, \cdots, x_g)$$

$$y = (x_1, x_2, \cdots, y_i, \cdots, x_g)$$
A Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, w)$ is **nice** if every region is a bigon or square, except the (preferred) region containing w, which is a polygon. Regions are connected components of $\Sigma \setminus (\alpha \cup \beta)$.

Generators: $x = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$

(σ’s are elements in S_g.)

There are two types of differentials:

$$x = (x_1, x_2, \cdots, x_i, \cdots, x_g)$$

$$\downarrow$$

$$y = (x_1, x_2, \cdots, y_i, \cdots, x_g)$$
A Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, w)$ is **nice** if every region is a bigon or square, except the (preferred) region containing w, which is a polygon. Regions are connected components of $\Sigma \setminus (\alpha \cup \beta)$.

Generators: $x = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$
(σ’s are elements in S_g.)

There are two types of differentials:

\[
x = (x_1, \cdots, x_i, \cdots, x_j, \cdots, x_g)
\]

\[
y = (x_1, \cdots, y_i, \cdots, y_j, \cdots, x_g)
\]
Combinatorial Floer homology

Definition

A Heegaard diagram \(\mathcal{H} = (\Sigma, \alpha, \beta, w) \) is **nice** if every region is a bigon or square, except the (preferred) region containing \(w \), which is a polygon. Regions are connected components of \(\Sigma \setminus (\alpha \cup \beta) \).

Generators: \(x = (x_1, \ldots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)}) \)
(\(\sigma \)'s are elements in \(S_g \).)

There are two types of differentials:

\[
\begin{align*}
x & = (x_1, \ldots, x_i, \ldots, x_j, \ldots, x_g) \\
y & = (x_1, \ldots, y_i, \ldots, y_j, \ldots, x_g)
\end{align*}
\]
Combinatorial Floer homology

Definition

A Heegaard diagram $\mathcal{H} = (\Sigma, \alpha, \beta, w)$ is **nice** if every region is a bigon or square, except the (preferred) region containing w, which is a polygon. Regions are connected components of $\Sigma \setminus (\alpha \cup \beta)$.

Generators: $x = (x_1, \cdots, x_g) \in (\alpha_1 \cap \beta_{\sigma(1)}) \times \cdots \times (\alpha_g \cap \beta_{\sigma(g)})$

(σ's are elements in S_g.)

There are two types of differentials:

$x = (x_1, \cdots, x_i, \cdots, x_j, \cdots, x_g)$

\downarrow

$y = (x_1, \cdots, y_i, \cdots, y_j, \cdots, x_g)$
Existence

Theorem (Sarkar-W)

Every closed orientable three-manifold admits a nice Heegaard diagram. Every null-homologous knot in a closed orientable three-manifold admits a nice Heegaard diagram.

Theorem (W)

Every pointed Heegaard diagram is isotopic to a nice Heegaard diagram.
Theorem (Sarkar-W)

Every closed orientable three-manifold admits a nice Heegaard diagram. Every null-homologous knot in a closed orientable three-manifold admits a nice Heegaard diagram.

Theorem (W)

Every pointed Heegaard diagram is isotopic to a nice Heegaard diagram.
Example: the trefoil knot
Example: the trefoil knot
Example: the trefoil knot
Example: the trefoil knot

Peking University - Jiajun Wang
Equivalence and Invariance
Example: the trefoil knot, computation

\[s(x) - s(y) = n_z(\phi) - n_w(\phi) \]

\[gr(x) - gr(y) = 1 - 2n_w(\phi) \]

The chain complex is

\[\hat{HC}(S^3, T) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}, \quad \hat{HC}(S^3) = \mathbb{Z} \]
Example: the Poincaré homology sphere $\Sigma(2, 3, 5)$

#Generators: 21, # Differentials: ???
Example: the Poincaré homology sphere - a nice diagram

#Generators: 335, #Differentials: 505, $\widehat{HC}(\Sigma(2,3,5)) = \mathbb{Z}$
Every knot in S^3 has a grid diagram, which is a multiply-pointed genus one Heegaard diagram of S^3.

![Grid Diagram](image)
Ozsváth and Szabó used convenient diagrams, which is a special kind of nice diagrams to define the hat Heegaard Floer homology, and showed the invariance.
Theorem (W)

Any two nice Heegaard diagrams for a closed oriented three-manifold can be transformed to one another via admissible moves.

Theorem (W)

For a given closed oriented three-manifold, the Floer homology does not depend on the choice of the nice Heegaard diagram.
Equivalence and Invariance

Theorem (W)

Any two nice Heegaard diagrams for a closed oriented three-manifold can be transformed to one another via admissible moves.

Theorem (W)

For a given closed oriented three-manifold, the Floer homology does not depend on the choice of the nice Heegaard diagram.
Admissible move, isotopy

Here D'_1 and D'_2 either a bigon or the preferred region D_w.

(a) \hspace{5cm} (b)
Admissible move, isotopy

Here D'_2 and D'_3 are either a bigon or the preferred region D_w.
An *admissible stabilization* is a stabilization in a small neighborhood of the marked point \(w \), followed by a finger move of the new beta curve to a bigon or \(D_w \).
Admissible move, handleslide and stablization

An *admissible stabilization* is a stabilization in a small neighborhood of the marked point w, followed by a finger move of the new beta curve to a bigon or D_w.
Why a chain complex? index two disks.

Let y be a generator appearing in $\partial^2 x$, i.e., there is a index two disk connecting x to y. It will looks like (let us just consider squares, for simplicity)
Why a chain complex? “Gromov compactness”

We see that the generator y (white dot) appears in $\partial^2 x$ in pairs. So $\partial^2 x = 0$ with \mathbb{Z}_2 coefficients.
Again the generator y (white dot) appears in $\partial^2 x$ in pairs.
Why a chain complex? “Gromov compactness”, continued
Proof of Equivalence, admissible handleslides

Proposition

A handleslide on a Heegaard diagram can be made admissible modulo admissible isotopies.
Proposition

Let $\mathcal{H} = (\Sigma, \alpha, \beta, \gamma w)$ be a pointed triple diagram. Suppose both $\mathcal{H}^1 = (\Sigma, \alpha, \beta, w)$ and $\mathcal{H}^2 = (\Sigma, \alpha, \gamma, w)$ are nice diagrams and the beta and gamma curves are isotopic in the complement of w. Then \mathcal{H}^1 and \mathcal{H}^2 can be made identical after admissible moves and ambient isotopy of Σ.
Proof of equivalence

Suppose \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams for Y.

- They become equivalent after some admissible moves.
- Make the alpha curves isotopic in $\Sigma \setminus w$ after admissible handleslides.
- Make the two set of alpha curves identical.
- By admissible handleslides of beta curves, make beta and gamma curves isotopic in $\Sigma \setminus w$.
- Make beta and gamma curves identical after admissible isotopies.
Proof of equivalence

- Suppose \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams for Y.
- They become equivalent after some admissible moves.
 - Make the alpha curves isotopic in $\Sigma \setminus w$ after admissible handleslides.
 - Make the two set of alpha curves identical.
 - By admissible handleslides of beta curves, make beta and gamma curves isotopic in $\Sigma \setminus w$.
 - Make beta and gamma curves identical after admissible isotopies.
Proof of equivalence

- Suppose \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams for Y.
- They become equivalent after some admissible moves.
- Make the alpha curves isotopic in $\Sigma \setminus w$ after admissible handleslides.
 - Make the two set of alpha curves identical.
 - By admissible handleslides of beta curves, make beta and gamma curves isotopic in $\Sigma \setminus w$.
 - Make beta and gamma curves identical after admissible isotopies.
Proof of equivalence

- Suppose \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams for Y.
- They become equivalent after some admissible moves.
- Make the alpha curves isotopic in $\Sigma \setminus w$ after admissible handleslides.
- Make the two set of alpha curves identical.
- By admissible handleslides of beta curves, make beta and gamma curves isotopic in $\Sigma \setminus w$.
- Make beta and gamma curves identical after admissible isotopies.
Proof of equivalence

- Suppose \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams for Y.
- They become equivalent after some admissible moves.
- Make the alpha curves isotopic in $\Sigma \setminus w$ after admissible handleslides.
- Make the two set of alpha curves identical.
- By admissible handleslides of beta curves, make beta and gamma curves isotopic in $\Sigma \setminus w$.
- Make beta and gamma curves identical after admissible isotopies.
Proof of equivalence

- Suppose \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams for Y.
- They become equivalent after some admissible moves.
- Make the alpha curves isotopic in $\Sigma \setminus w$ after admissible handleslides.
- Make the two set of alpha curves identical.
- By admissible handleslides of beta curves, make beta and gamma curves isotopic in $\Sigma \setminus w$.
- Make beta and gamma curves identical after admissible isotopies.
Algebraic lemma

Let \((C, \partial)\) be a graded chain complex generated by \(G = \{g_1, \cdots, g_m\}\) and the differential \(\partial\) is of degree \(-1.\) We write

\[
\partial g_i = \sum_{j=1}^{m} a^j_i g_j.
\]

Suppose \(a^l_k = 1.\) Let \(C'\) be the vector space generated by \(G \setminus \{g_k, g_l\}\) with the same degree as in \(C.\) Define

\[
\partial'(g_i) := \sum_{j \neq k, l} (a^j_i + a^l_i a^j_k) g_j.
\]

Let \(\Phi : C \to C', \quad \Phi(g_k) := 0, \quad \Phi(g_l) := \sum_{j \neq k, l} a^j_k g_j, \quad \Phi(g_j) := g_j \text{ (for } j \neq k, l)\)

\[
\Psi : C' \to C, \quad \Psi(g_j) = g_j + a^j_l g_k \quad (j \neq k, l).
\]

Lemma

\((C', \partial')\) is a chain complex (that is, \(\partial' \circ \partial' = 0).\) Moreover, \((C, \partial)\) and \((C', \partial')\) are chain equivalent under the pair \((\Phi, \Psi).\)
Algebraic lemma

Let \((C, \partial)\) be a graded chain complex generated by \(G = \{g_1, \cdots, g_m\}\) and the differential \(\partial\) is of degree \(-1\). We write

\[
\partial g_i = \sum_{j=1}^{m} a_j^i g_j.
\]

Suppose \(a_k^l = 1\). Let \(C'\) be the vector space generated by \(G \setminus \{g_k, g_l\}\) with the same degree as in \(C\). Define

\[
\partial'(g_i) := \sum_{j \neq k, l} (a_j^i + a_j^l a_k^i) g_j.
\]

\[
\Phi : C \rightarrow C', \quad \Phi(g_k) := 0, \quad \Phi(g_l) := \sum_{j \neq k, l} a_j^l g_j, \quad \Phi(g_j) := g_j \ (\text{for } j \neq k, l)
\]

\[
\Psi : C' \rightarrow C, \quad \Psi(g_j) = g_j + a_j^l g_k \ (j \neq k, l)
\]

Lemma

\((C', \partial')\) is a chain complex (that is, \(\partial' \circ \partial' = 0\)). Moreover, \((C, \partial)\) and \((C', \partial')\) are chain equivalent under the pair \((\Phi, \Psi)\).
Let \((C, \partial)\) be a graded chain complex generated by \(G = \{g_1, \cdots, g_m\}\) and the differential \(\partial\) is of degree \(-1\). We write

\[
\partial g_i = \sum_{j=1}^{m} a_i^j g_j.
\]

Suppose \(a_k^l = 1\). Let \(C'\) be the vector space generated by \(G \setminus \{g_k, g_l\}\) with the same degree as in \(C\). Define

\[
\partial'(g_i) := \sum_{j \neq k, l} (a_i^j + a_i^l a_k^j) g_j.
\]

\[
\Phi : C \to C', \quad \Phi(g_k) := 0, \quad \Phi(g_l) := \sum_{j \neq k, l} a_k^j g_j, \quad \Phi(g_j) := g_j \text{ (for } j \neq k, l) \]

\[
\Psi : C' \to C, \quad \Psi(g_j) = g_j + a_l^j g_k \quad (j \neq k, l)
\]

Lemma

\((C', \partial')\) is a chain complex (that is, \(\partial' \circ \partial' = 0\)). Moreover, \((C, \partial)\) and \((C', \partial')\) are chain equivalent under the pair \((\Phi, \Psi)\).
Algebraic lemma

Let \((C, \partial)\) be a graded chain complex generated by \(G = \{g_1, \cdots, g_m\}\) and the differential \(\partial\) is of degree \(-1\). We write

\[
\partial g_i = \sum_{j=1}^{m} a^j_i g_j.
\]

Suppose \(a^l_k = 1\). Let \(C'\) be the vector space generated by \(G \setminus \{g_k, g_l\}\) with the same degree as in \(C\). Define

\[
\partial'(g_i) := \sum_{j \neq k, l} (a^j_i + a^l_i a^j_k) g_j.
\]

\[\Phi : C \to C', \quad \Phi(g_k) := 0, \quad \Phi(g_l) := \sum_{j \neq k, l} a^j_k g_j, \quad \Phi(g_j) := g_j \text{ (for } j \neq k, l)\]

\[\Psi : C' \to C, \quad \Psi(g_j) = g_j + a^l_j g_k \quad (j \neq k, l)\]

Lemma

\((C', \partial')\) is a chain complex (that is, \(\partial' \circ \partial' = 0\)). Moreover, \((C, \partial)\) and \((C', \partial')\) are chain equivalent under the pair \((\Phi, \Psi)\).
Algebraic lemma

Let \((C, \partial)\) be a graded chain complex generated by \(G = \{g_1, \cdots, g_m\}\) and the differential \(\partial\) is of degree \(-1\). We write

\[
\partial g_i = \sum_{j=1}^{m} a^j_i g_j.
\]

Suppose \(a_k^l = 1\). Let \(C'\) be the vector space generated by \(G \setminus \{g_k, g_l\}\) with the same degree as in \(C\). Define

\[
\partial'(g_i) := \sum_{j \neq k, l} (a^j_i + a^j_k a^l_i) g_j.
\]

\[
\Phi : C \to C', \quad \Phi(g_k) := 0, \quad \Phi(g_l) := \sum_{j \neq k, l} a^j_k g_j, \quad \Phi(g_j) := g_j \text{ (for } j \neq k, l)\]

\[
\Psi : C' \to C, \quad \Psi(g_j) = g_j + a^j_k g_k \quad (j \neq k, l)
\]

Lemma

\((C', \partial')\) is a chain complex (that is, \(\partial' \circ \partial' = 0\)). Moreover, \((C, \partial)\) and \((C', \partial')\) are chain equivalent under the pair \((\Phi, \Psi)\).
Proof of Invariance

Proposition (Handleslide invariance)

Let \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams which differ by an admissible handleslide. Then $\widetilde{CC}(\mathcal{H}_1)$ and $\widetilde{CC}(\mathcal{H}_2)$ are chain equivalent.
Equivalence and Invariance
Proposition (isotopy invariance)

Let \mathcal{H}_1 and \mathcal{H}_2 are two nice diagrams which differ by an admissible isotopy. Then $\widehat{CC}(\mathcal{H}_1)$ and $\widehat{CC}(\mathcal{H}_2)$ are chain equivalent.
Thank you!

спасибо!
Я помню чудное мгновенье:
Передо мной явилась ты,
Как мимолетное виденье,
Как гений чистой красоты.