Nambu bracket and sigma-models

Andrei Shishanin

Bauman Moscow State Technical University

July 5th, 2017

Outline

Chern-Simons model

The Poisson sigma-model and its twisted version
The Nambu mechanics

The Nambu σ-models

3d TQFT and knots

Put M-3d manifold with a principial bundle with group G (A -conection form)

$$
S_{C S}=\frac{k}{4 \pi} \int_{M} \operatorname{tr}\left(A d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

The partition function

$$
Z(k)=\int D A e^{i S_{c s}}
$$

Feynman's integral over all equivalence classes of connections modulo gauge transformations
k is a coupling constant and for gauge invariance $k \in \mathbb{Z}$

correlators

Here gauge invariant observables are the Wilson lines

$$
W_{R}(C)=\operatorname{tr}_{R} P e^{\oint_{C} A}
$$

R is irreducible representation of G, C is oriented closed curve (knot), P is P -ordering
Put a link C with components K_{1}, \ldots, K_{L}

$$
W_{R_{1}, \ldots, R_{L}}(C)=<W_{R_{1}}^{K_{L}} \ldots W_{R_{L}}^{K_{L}}>=\frac{1}{Z(M)} \int D A\left(\prod_{i=1}^{L} W_{R_{i}}^{K_{i}}\right) e^{i S_{C S}}
$$

SU(N)

For $\operatorname{SU}(N)$ one can obtain the HOMFLY-PT polynomial $P_{C}(q, \lambda)$ (for $S U(2)$ the Jones polynomial) and all $R_{i}=\square$

$$
W_{\square, \ldots, \square}(C) \sim P_{C}(q, \lambda)
$$

where $q=\exp \left(\frac{2 \pi i}{k+N}\right)$ and $\lambda=q^{N}$
$S U(2) \rightarrow$ the Jones polynomials
$S O(N) \rightarrow$ the Kauffman polynomial

The partition functions for SU(N)

The partition function for $S U(N)$

$$
Z\left(S^{3}, N, k\right)=\frac{1}{\sqrt{N}(k+N)^{\frac{N}{2}-1}} \prod_{i=1}^{N-1}\left(2 \sin \left(\frac{\pi i}{k+N}\right)\right)^{N-i}
$$

$Z\left(T^{3}, N, k\right)$ counts the number of integrable irreducible highest-weight representations of the affine Kac-Moody algebra $S U(N)_{k}$

$$
Z\left(T^{3}, N, k\right)=\frac{1}{B(N, K)}
$$

The Courant sigma-model (D. Roytenberg '01)

Put some vector bundle $E \rightarrow M_{0}$. Let us consider supermanifold $\Pi T^{*} E$. If $\left\{x_{i}\right\}$ are local coordinates on M_{0} and $\left\{e_{i}\right\}$ is a local basis of section for E with $\left.<e_{a}, e_{b}\right\rangle=g_{a b}=$ const.
Courant algebroid ($E,<\cdot, \cdot>$) the anchor map has matrix P_{a}^{i}
$S(X, A, F)=\int_{N} F_{i} d X^{i}+\frac{1}{2} A^{a} g_{a b} d A^{b}-A^{a} P_{a}^{i}(X) F_{i}+\frac{1}{6} T_{a b c} A^{a} A^{b} A^{c}+\ldots$
$F=0$ and $T_{a b c}=\epsilon_{a b c}$ one can obtain usual Chern-Simons theory

The Poisson manifold

Put N is a Poisson manifold
(N has Poisson bi-vector $\pi=\frac{1}{2} \pi^{i j}(x) \partial_{i} \wedge \partial_{j}$)

$$
\{f(x), g(x)\}=\pi^{i j}(x) \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{j}}
$$

The Jacobi identity $\{\{f, g\}, h\}+c y c l .=0$

$$
[\pi, \pi]_{N S}=0
$$

The time evolution is given by

$$
\frac{d f}{d t}=\{H, f\}
$$

The Schouten-Nijenhuis bracket

The bracket for polivectors

$$
\begin{gathered}
{[\cdot, \cdot]_{N S}: M^{n}(N) \times M^{m}(N) \rightarrow M^{n+m-1}(N),} \\
{\left[u_{1} \wedge \ldots \wedge u_{n}, v_{1} \wedge \ldots \wedge v_{m}\right]_{N S}=\sum_{i, j}(-1)^{i+j}\left[u_{i}, v_{j}\right] \wedge \ldots \wedge \mu_{i} \wedge \ldots v_{1} \wedge \ldots \not v_{j} \wedge \ldots v_{n}}
\end{gathered}
$$

2d σ-models

Usually 2d sigma-models have action

$$
S=\int_{\Sigma} \eta^{\mu \nu}(x) g^{i j}(\phi) \partial_{\mu} \phi_{i} \partial_{\nu} \phi_{j} \sqrt{\eta(x)} d^{2} x
$$

here Σ is two-dimensional (super)manifold (world-sheet or space-time) with metric η and fields ϕ_{i} lie in a (super)manifold L (target space) with metric g
Simple example $O(N)$-model

$$
S=\frac{1}{2 g^{2}} \int_{X} \partial_{\mu} \phi_{i} \partial_{\mu} \phi_{i}, \quad \phi_{i} \phi_{i}=1
$$

Supersymmetric examples are A and B-models

The Poisson σ-model

Put (L, π) the Poisson manifold with fields 0 -forms X^{i} (cordinates on target L) and 1-form A

$$
A=A_{\mu i} d x^{\mu} \wedge d X^{i}
$$

Then the topological Poisson σ-model

$$
S_{t}=\int_{\Sigma} A_{i} \wedge d X^{i}+\frac{1}{2} \pi^{i j}(X) A_{i} \wedge d A_{j}
$$

Seiberg-Witten map

$$
S_{1}=\int_{\Sigma} A_{i} \wedge d X^{i}+\frac{1}{2} \pi^{i j} A_{i} \wedge A_{j}+\frac{1}{2}\left(G^{-1}\right)^{i j} A_{i} \wedge * A_{j}
$$

Put $2 \pi \alpha^{\prime}=1$. The string sigma-model is

$$
S_{2}=\frac{1}{2} \int_{\Sigma}\left(g_{i j} d X^{i} \wedge * d X^{j}+B_{i j} d X^{i} \wedge d X^{j}\right)
$$

g and B are related to G^{-1} and π

$$
\frac{1}{g+B}=G^{-1}+\pi
$$

Topological limit $G^{-1} \rightarrow 0$
Noncommutative limit $g \rightarrow 0\left(\alpha^{\prime} \rightarrow 0\right)$

$$
x_{i} \rightarrow \tilde{x}_{i}=x_{i}+\theta_{i j} A_{j}
$$

twisted Poisson structure

If (N, π) has a closed 3 -form H. Then the twisted Jacobi identity

$$
\begin{gathered}
\frac{1}{2}[\pi, \pi]_{S N}=\Lambda^{3} \pi H \\
S(X, A)=\int_{\Sigma}\left(A_{i} \wedge d X^{i}+\frac{1}{2} \pi^{i j} A_{i} \wedge A_{j}\right)+S_{W Z} \\
S_{W Z}=\int_{\Lambda} \tilde{H}
\end{gathered}
$$

where $\partial \Lambda=\Sigma$ and \tilde{H} mean the pullback of H to Λ by extinsion to V of the map X^{i}

n-Lie algebras

an algebra with n-ary map [] : $A^{\wedge n} \rightarrow A$ (Nambu-Filippov algebra)

$$
\begin{gathered}
{\left[L_{1}, L_{2}, \ldots, L_{n}\right]=(-1)^{\epsilon(\sigma)}\left[L_{\sigma_{1}}, \ldots L_{\sigma_{n}}\right] \quad \sigma \in S_{n}} \\
{\left[L_{i_{1}}, L_{i_{2}}, \ldots, L_{i_{n}}\right]=f_{i_{1} \ldots i_{n}}^{k} L_{k}}
\end{gathered}
$$

The Leibniz rule

$$
\left[L_{0} L_{i_{1}}, L_{i_{2}}, \ldots, L_{i_{n}}\right]=L_{0}\left[L_{i_{1}}, L_{i_{2}}, \ldots, L_{i_{n}}\right]+\left[L_{0}, L_{i_{2}}, \ldots, L_{i_{n}}\right] L_{i_{1}}
$$

There is generalized Jacobi identity (Fundamential identity)

Example. Nambu-Heisenberg algebra

$$
\left[x_{1}, x_{2}, x_{3}\right]=x_{1} x_{2} x_{3}-x_{1} x_{3} x_{2}+x_{3} x_{1} x_{2}-x_{3} x_{2} x_{1}+x_{2} x_{3} x_{1}-x_{2} x_{1} x_{3}=-i \hbar l
$$

The Nambu bracket

$$
\begin{gathered}
\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}=\pi^{n}\left(d f_{1}, d f_{2}, \ldots d f_{n}\right), \\
\pi^{n}=\pi^{i_{1} \ldots i_{n}} \partial_{i_{1}} \wedge \ldots \wedge \partial_{i_{n}}
\end{gathered}
$$

Generalized Jacobi identity (Fundamential identity)

$$
\begin{gathered}
\left\{\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}, f_{n+1}, \ldots, f_{2 n-1}\right\}+\left\{f_{n},\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}, f_{n+2}, \ldots, f_{2 n-1}\right\}+\ldots \\
+\left\{f_{n+1}, \ldots f_{2 n-1},\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}\right\}=\left\{f_{1}, f_{2}, \ldots, f_{n-1},\left\{f_{n}, \ldots, f_{2 n-1}\right\}\right\} \\
\frac{d f}{d t}=\left\{H_{1}, H_{2}, \ldots, H_{n}, f\right\}
\end{gathered}
$$

Example of Nambu mechanics

The asymmetric Euler top with $H_{1}=\frac{1}{2}\left(\frac{L_{1}^{2}}{l_{1}}+\frac{L_{2}^{2}}{l_{2}}+\frac{L_{3}^{2}}{l_{3}}\right)$ and $H_{2}=\frac{1}{2}\left(L_{1}^{2}+L_{2}^{2}+L_{3}^{2}\right)$
The Nambu equations $\frac{d L_{i}}{d t}=\epsilon^{i j k} \partial_{j} H_{1} \partial_{k} H_{2}$

$$
\frac{d L_{1}}{d t}=\left(\frac{1}{I_{2}}-\frac{1}{I_{3}}\right) L_{2} L_{3}, \quad \frac{d L_{2}}{d t}=\left(\frac{1}{I_{3}}-\frac{1}{I_{1}}\right) L_{3} L_{1}, \frac{d L_{3}}{d t}=\left(\frac{1}{I_{2}}-\frac{1}{I_{3}}\right) L_{1} L
$$

3d Nambu topological sigma-model (Schupp, Jurco '2012)

Put 1-forms $A_{i j}=A_{i j \alpha} d x^{\alpha}$ and 2-forms $B_{i}=B_{i \alpha \beta} d x^{\alpha} \wedge d x^{\beta}$ on N and $\alpha, \beta=0,1,2$
The action for the topological Nambu sigma-model has form

$$
S_{N}(X, A, B)=\int_{N}\left(B_{i} \wedge d X^{i}+A_{i j} \wedge d X^{i} d X^{j}+\frac{1}{6} \pi^{i j k} A_{i j} \wedge B_{k}\right)
$$

Here one can add terms which depends on metric

$$
\frac{1}{2} \int_{N}\left(G^{i j} B_{i} \wedge * B_{j}+\tilde{G}^{k l m n} A_{k l} \wedge * A_{m n}\right)
$$

There is a similar description by the membrane sigma model and Seiberg-Witten map

Remark about twisted Nambu bracket and sigma-model

It ia possible to imagine the Jacobi identity for the Nambu bracket like usual the Poisson bracket

$$
\left[\pi^{n}, \pi^{n}\right]_{S N}=0
$$

If manifold $V(N=\partial V)$ has some $(n+1)$-form H we again can add right side in the Jacobi identity and Wess-Zumino term in the action

$$
\begin{gathered}
{\left[\pi^{n}, \pi^{n}\right]_{S N}=\Lambda^{3} \pi^{n} H} \\
S=S_{N}+\int_{V} \tilde{H}
\end{gathered}
$$

Thank you for attention

