Homotopy Aspects of Braids and Links

Jie Wu
National University of Singapore

4th China-Russia Workshop on Knot Theory and Related Topics, Moscow, 3-8 July 2017

Homotopy Aspects of Braids and Links

Classical connections between braids and homotopy

Brunnian braids and homotopy groups

Lie algebra on Brunnian braids

Structural braids and links

Braids and double loop spaces

Configuration space
$F(M, n)=\left\{\left(z_{1}, \ldots, z_{n}\right) \in M^{\times n} \mid z_{i} \neq z_{j}\right.$ for $\left.i \neq j\right\}$.
$F\left(\mathbb{R}^{2}, n\right) \simeq K\left(P_{n}, 1\right)$ and $F\left(\mathbb{R}^{2}, n\right) / \Sigma_{n} \simeq K\left(B_{n}, 1\right)$, where B_{n} is the n-strand Artin braid group and P_{n} is the pure braid group.

Configuration space with labels in a space X $C(M ; X)=\bigcup_{n} F(M, n) \times \Sigma_{n} X^{n} / \sim$, where
$\left(z_{1}, \ldots, z_{n} ; x_{1}, \ldots, x_{n}\right) \sim\left(z_{1}, \ldots, z_{n-1} ; x_{1}, \ldots, x_{n-1}\right)$ if $x_{n}=*$.
(Segal'73, first by May’72 (LNM Vol. 271), ideas earlier by Boardman-Vogt'68): $C\left(\mathbb{R}^{k} ; X\right) \simeq \Omega^{k} \Sigma^{k} X$ if X path-connected.

Quillen's plus construction on braid groups

A consequence of Segal's work: There is a map $K\left(B_{\infty}, 1\right) \rightarrow \Omega_{0}^{2} S^{2}$ inducing an isomorphism on homology, where $\Omega_{0}^{2} S^{2}$ is the path-connected component of $\Omega^{2} S^{2}$ containing the base-point.

Cohomology of braid groups B_{n} was first studied by Arnold'70, also studied by D. B. Fuks'70 and F. R. Cohen'73.

Quillen's plus construction: $q_{X}: X \rightarrow X^{+}$is a pointed cofibration which induces isomorphisms on homology with abelian local coefficients and epimorphism on π_{1} with $\operatorname{Ker}\left(\pi_{1}\left(q_{X}\right)\right)$ the maximal perfect subgroup of $\pi_{1}(X)$.
$K\left(B_{\infty}, 1\right)^{+} \simeq \Omega_{0}^{2} S^{2}$.

Brunnian braids

A Brunnian braid (called smooth braids by Makanin) means a braid that becomes trivial after removing any one of its strands.

- Levinson'75: (called decomposable braids) Let

$$
t_{i}=\sigma_{i} \sigma_{i+1} \cdots \sigma_{n-2} \sigma_{n-1}^{2} \sigma_{n-2}^{-1} \cdots \sigma_{i}^{-1}
$$

for $1 \leq i \leq n-1$. Let $R_{i}=\left\langle\left\langle t_{i}\right\rangle\right\rangle$ be the normal closure of t_{i} in the pure braid group P_{n}. Then

$$
\operatorname{Brun}_{4}\left(D^{2}\right)=\left[\left[R_{1}, R_{2}\right], R_{3}\right] \cdot\left[\left[R_{1}, R_{3}\right], R_{2}\right]
$$

- Generalized by Jingyan Li- Wu'11: For each $n \geq 3$,

$$
\operatorname{Brun}_{n}\left(D^{2}\right)=\prod_{\sigma \in \Sigma_{n-1}}\left[\left[R_{\sigma(1)}, R_{\sigma(2)}\right], \ldots, R_{\sigma(n-1)}\right]
$$

- Makanin's Question'80 on determining generators for Brunnian braids. Answered by Gurzo' 81, and Johnson'82.

Brunnian braids

- Berrick-Cohen-Wong-Wu'06: There is an exact sequence $1 \rightarrow \operatorname{Brun}_{n+1}\left(S^{2}\right) \rightarrow \operatorname{Brun}_{n}\left(D^{2}\right) \rightarrow \operatorname{Brun}_{n}\left(S^{2}\right) \rightarrow \pi_{n-1}\left(S^{2}\right) \rightarrow 1$ for $n \geq 5$.
- Badakov-Mikhailov-Vershinin-Wu'12: Let M be a connected 2-manifold and let $n \geq 2$. The inclusion $f: D^{2} \hookrightarrow M$ induces a group homomorphism

$$
f_{*}: P_{n}\left(D^{2}\right) \longrightarrow P_{n}(M) .
$$

Let $A_{i, j}[M]=f_{*}\left(A_{i, j}\right)$ and let $\left\langle\left\langle A_{i, j}[M]\right\rangle\right\rangle^{P}$ be the normal closure of $A_{i, j}[M]$ in $P_{n}(M)$. Let

$$
R_{n}(M)=\left[\left\langle\left\langle A_{1, n}[M]\right\rangle\right\rangle^{P},\left\langle\left\langle A_{2, n}[M]\right\rangle\right\rangle^{P}, \ldots,\left\langle\left\langle A_{n-1, n}[M]\right\rangle\right\rangle^{P}\right]_{S}
$$

Badakov-Mikhailov-Vershinin-Wu'12:

- Theorem 1.

1. If $M \neq S^{2}$ or $\mathbb{R} \mathrm{P}^{2}$, then

$$
\operatorname{Brun}_{n}(M)=R_{n}(M)
$$

2. If $M=S^{2}$ and $n \geq 5$, then there is a short exact sequence

$$
R_{n}\left(S^{2}\right) \hookrightarrow \operatorname{Brun}_{n}\left(S^{2}\right) \rightarrow \pi_{n-1}\left(S^{2}\right)
$$

3. If $M=\mathbb{R} \mathrm{P}^{2}$ and $n \geq 4$ then there is a short exact sequence

$$
R_{n}\left(\mathbb{R P}^{2}\right) \hookrightarrow \operatorname{Brun}_{n}\left(\mathbb{R} \mathrm{P}^{2}\right) \rightarrow \pi_{n-1}\left(S^{2}\right) .
$$

- Theorem 2. The factor groups $P_{n}(M) / \operatorname{Brun}_{n}(M)$ and $B_{n}(M) / \operatorname{Brun}_{n}(M)$ are finitely presented for each $n \geq 3$.
- Question 23 in Birman's book'75 on braid, links and mapping class groups: Determine a free basis for $\operatorname{Brun}_{n}\left(S^{2}\right)$. Unsolved. Seems hard question.

$\pi_{*}\left(S^{k}\right)$ for $k \geq 3$-Mikhailov-Wu

- We give a combinatorial description of $\pi_{*}\left(S^{k}\right)$ for any $k \geq 3$ by using the free product with amalgamation of pure braid groups.
- Given $k \geq 3, n \geq 2$, let P_{n} be the n-strand Artin pure braid group with the standard generators $A_{i, j}$ for $1 \leq i<j \leq n$. We construct certain (free) explicit subgroup $Q_{n, k}$ of P_{n} (depending on n and k).

$\pi_{*}\left(S^{k}\right)$ for $k \geq 3 — M i k h a i l o v-W u$

Now consider the free product with amalgamation

$$
P_{n} * Q_{n, k} P_{n} .
$$

Namely this amalgamation is obtained by identifying the elements y_{j} in two copies of P_{n}. Let $A_{i, j}$ be the generators for the first copy of P_{n} and let $A_{i, j}^{\prime}$ denote the generators $A_{i, j}$ for the second copy of P_{n}. Let $R_{i, j}=\left\langle\mathcal{A}_{i, j}, A_{i, j}^{\prime}\right\rangle^{P_{n} * Q_{n, k}} P_{n}$ be the normal closure of $A_{i, j}, A_{i, j}^{\prime}$ in $P_{n} * Q_{n, k} P_{n}$. Let

$$
\left[R_{i, j} \mid 1 \leq i<j \leq n\right]_{S}=\prod_{\{1,2, \ldots, n\}=\left\{i_{i}, j_{1}, \ldots, i_{t}, j\right\}}\left[\left[R_{i_{1}, j_{1}}, R_{i_{2}, j_{2}}\right], \ldots, R_{i_{i}, j t}\right]
$$

be the product of all commutator subgroups such that each integer $1 \leq j \leq n$ appears as one of indices at least once.

Mikhailov-Wu'13

Theorem. Let $k \geq 3$. The homotopy group $\pi_{n}\left(S^{k}\right)$ is isomorphic to the center of the group

$$
\left(P_{n} * Q_{n, k} P_{n}\right) /\left[R_{i, j} \mid 1 \leq i<j \leq n\right]_{S}
$$

for any n if $k>3$ and any $n \neq 3$ if $k=3$.

- Note. The only exceptional case is $k=3$ and $n=3$. In this case, $\pi_{3}\left(S^{3}\right)=\mathbb{Z}$ while the center of the group is $\mathbb{Z}^{\oplus 4}$.

Lie algebras of groups

We recall that for a group G the descending central series

$$
G=\Gamma_{1} \geq \Gamma_{2} \geq \cdots \geq \Gamma_{i} \geq \Gamma_{i+1} \geq \ldots
$$

is defined by the formulae

$$
\Gamma_{1}=G, \quad \Gamma_{i+1}=\left[\Gamma_{i}, G\right] .
$$

The descending central series of a discrete group G gives rise to the associated graded Lie algebra (over \mathbb{Z}) $L(G)$

$$
L_{i}(G)=\Gamma_{i}(G) / \Gamma_{i+1}(G) .
$$

Yang-Baxter Lie algebra

Let $G=P_{n}$.
Kohno'85: The Lie algebra $L\left(P_{n}\right)$ is the quotient of the free Lie algebra $L\left[A_{i, j} \mid 1 \leq i<j \leq n\right]$ generated by elements $A_{i, j}$ with $1 \leq i<j \leq n$ modulo the "infinitesimal braid relations" or "horizontal $4 T$ relations" given by the following three relations:

$$
\left\{\begin{array}{l}
{\left[A_{i, j}, A_{s, t}\right]=0, \text { if }\{i, j\} \cap\{s, t\}=\emptyset,} \tag{1}\\
{\left[A_{i, j}, A_{i, k}+A_{j, k}\right]=0, \text { if } i<j<k,} \\
{\left[A_{i, k}, A_{i, j}+A_{j, k}\right]=0, \text { if } i<j<k .}
\end{array}\right.
$$

Braid Commutators and Vassiliev Invariants

Ted Stanford'96: Let L and L^{\prime} be two links which differ by a braid $p \in \Gamma_{n}\left(P_{k}\right)$. Let v be a link invariant of order less than n. Then $v(L)=v\left(L^{\prime}\right)$.

Here the meaning for two links to differ by a braid p is as follows: Let \hat{x} denote the closure of a braid x. Let b and p be any two braids with the same number of strands. Then \hat{b} and $\hat{p b}$ differ by p.

In brief, lower central series of pure braid groups \Longrightarrow Vassiliev Invariants.

Vassiliev Invariants on subgroups of pure braid groups

Let $G \leq P_{k}$ be a subgroup of P_{k}. The elements in G give a set of special type of braids. Then the set $\hat{G}=\{\hat{x} \mid x \in G\}$ gives a subset of special type of links.

For detecting the Vassiliev invariants on the special type of links given by \hat{G}, a natural way is to consider

$$
G=\Gamma_{1}\left(P_{k}\right) \cap G \geq \Gamma_{2}\left(P_{k}\right) \cap G \geq \cdots \geq \Gamma_{i}\left(P_{k}\right) \cap G \geq \Gamma_{i+1}\left(P_{k}\right) \cap G \geq \ldots
$$

The resulting (relative) Lie algebra
$L^{P_{k}}(G)=\bigoplus_{i=1}^{\infty}\left(\Gamma_{i}\left(P_{k}\right) \cap G\right) /\left(\Gamma_{i+1}\left(P_{k}\right) \cap G\right)$ is a sub Lie algebra of the Yang-Baxter Lie algebra $L\left(P_{k}\right)$.

Symmetric bracket sum of Lie ideals

Let L be a Lie algebra and I_{1}, \ldots, I_{n} ideals of L. The symmetric bracket sum of these ideals is defined as

$$
\left[\left[I_{1}, I_{2}\right], \ldots, I_{l}\right]_{S}:=\sum_{\sigma \in \Sigma_{1}}\left[\left[I_{\sigma(1)}, I_{\sigma(2)}\right], \ldots, I_{\sigma(n)}\right]
$$

where Σ_{n} is the symmetric group on n letters.

Jingyan Li-Vershinin-Wu'15

Let us denote the ideal
$L\left[A_{k, n},\left[\cdots\left[A_{k, n}, A_{j_{1}, n}\right], \ldots, A_{j_{m}, n}\right] \mid j_{i} \neq k, n ; j_{i} \leq n-1, i \leq m ; m \geq 1\right]$
by I_{k}.

Theorem.
The Lie subalgebra $L^{P_{n}}\left(\operatorname{Brun}_{n}\right)$ and the symmetric bracket sum $\left[\left[I_{1}, I_{2}\right], \ldots, I_{n-1}\right]_{S}$ are equal as subalgebras in $L\left(P_{n}\right)$:

$$
L^{P_{n}}\left(\operatorname{Brun}_{n}\right)=\left[\left[I_{1}, I_{2}\right], \ldots, I_{n-1}\right]_{s} .
$$

Brunnian Lie algebra over S^{2}-Li-Vershinin-Wu, working progress

Let $\operatorname{BrunL}\left(S^{2}\right)_{n}=\bigcap_{i=1}^{n} \operatorname{ker}\left(d_{i}: L\left(P_{n}\left(S^{2}\right)\right) \rightarrow L\left(P_{n-1}\left(S^{2}\right)\right)\right)$. Let J_{i} be the image of l_{i} under the projection $L\left(P_{n}\right) \rightarrow L\left(P_{n}\left(S^{2}\right)\right)$.

Theorem. There is a short exact sequence

$$
\left[\left[J_{1}, J_{2}\right], \ldots, J_{n-1}\right]_{S} \longleftrightarrow \operatorname{BrunL}\left(S^{2}\right)_{n} \longrightarrow \wedge_{n-1}\left(S^{2}\right)
$$

for $n \geq 5$, where $\Lambda\left(S^{2}\right)$ is the Λ-algebra. Moreover

$$
\left[\left[\mathcal{J}_{1}, J_{2}\right], \ldots, J_{n-1}\right]_{S} \leq L^{P}\left(\operatorname{Brun}_{n}\left(S^{2}\right)\right) \leq \operatorname{BrunL}\left(S^{2}\right)_{n}
$$

with $\left|L^{P}\left(\operatorname{Brun}_{n}\left(S^{2}\right)\right) /\left[\left[J_{1}, J_{2}\right], \ldots, J_{n-1}\right] S\right|=\left|\pi_{n-1}\left(S^{2}\right)\right|$ for $n \geq 5$.

Bardakov-Vershinin-Wu'14

Let M be a general connected surface, possibly with boundary components. Consider the braid group $B_{n}(M)$. Let $d_{i}: B_{n}(M) \rightarrow B_{n-1}(M)$ be the function given by removing the i-th strand for $1 \leq i \leq n$.

Our question. Given an ($n-1$)-stand braid α, does there exist an n-strand braid β such that it is a solution of the system of equations

$$
\left\{\begin{array}{l}
d_{1} \beta=\alpha \\
\cdots \\
d_{n} \beta=\alpha
\end{array}\right.
$$

Theorem. Let $M \neq S^{2}, \mathbb{R P}^{2}$. Let $\alpha \in B_{n-1}(M)$. Then the above system of equations has a solution if and only if
$d_{1} \alpha=d_{2} \alpha=\cdots=d_{n-1} \alpha$.

Fengchun Lei-Fengling Li-Wu'14

Let (L, X) be a framed link in S^{3} with X a vector field defined in a neighborhood of L perpendicular to the tangent field of L. We can obtain a sequence of link $\mathbb{L}=\left\{L_{0}, L_{1}, \ldots, \ldots\right\}$, where $L_{0}=L$ and L_{n} is a naive n-cabling of L along the vector field X. By taking the fundamental groups of the link complements, we obtain a simplicial group $G(L, X)=\left\{\pi_{1}\left(S^{3} \backslash L_{n}\right)\right\}_{n \geq 0}$. Let

$$
L \cong L^{[1]} \sqcup L^{[2]} \sqcup \cdots \sqcup L^{[p]}
$$

be the splitting decomposition of the framed link L such that ($L^{[I]}, X \mid L^{[1]}$) is a nontrivial nonsplittable framed link for $1 \leq i \leq k$ and $\left(L^{[i]}, X \mid L^{[]]}\right)$is a trivial framed link for $k+1 \leq i \leq p$. Then

- Theorem. the geometric realization $|G(L ; X)|$ is homotopy k equivalent to $\Omega\left(\bigvee S^{3}\right)$.

Simplicial group $G(L, X)$ detects trivial framed knot

Let K be a framed knot with frame X.

- $G(K, X)$ is a knot invariant given by simplicial group. (K, X) is a trivial framed knot if and only if $G(K, X)$ is contractible. (K, X) is a non-trivial framed knot if and only if $G(K, X) \simeq \Omega S^{3}$.
- Recall that $\pi_{2}\left(\Omega S^{3}\right)=\pi_{3}\left(S^{3}\right)=\mathbb{Z}$.

$$
\pi_{2}(G(K, X))=\left\{\begin{array}{lll}
0 & \text { if } & (K, X) \text { a trivial framed knot } \\
\mathbb{Z} & \text { if } & (K, X) \text { a non-trivial framed knot }
\end{array}\right.
$$

- For different nontrivial framed knots (K, X) and (K^{\prime}, X^{\prime}), although $G(K, X)$ and $G\left(K^{\prime}, L^{\prime}\right)$ has the same homotopy type, they may be given by different link groups. Simplicial group ring $\mathbb{Z}(G(K, X))$ may give new knot invariants.

Fuquan Fang-Fengchun Lei-Wu'15

Let L be an n-link in a 3-manifold M. Let A_{i} be the normal closure of the i th meridian. Then the symmetric commutator subgroup

$$
\left[\left[A_{1}, \ldots, A_{n}\right]_{S}=\prod_{\sigma \in \Sigma_{n}}\left[\left[A_{\sigma(1)}, A_{\sigma(2)}\right], \ldots, A_{\sigma(n)}\right]\right.
$$

is a (normal) subgroup of the intersection subgroup
$A_{1} \cap A_{2} \cap \cdots \cap A_{n}$.

- Theorem. Let L be any strongly nonsplittable n-link in M with $n \geq 2$. Then

$$
\pi_{n}(M) \cong A_{1} \cap A_{2} \cap \cdots \cap A_{n} /\left[\left[A_{1}, \ldots, A_{n}\right]_{s}\right.
$$

for any $n \geq 2$.

- In particular, if $M=S^{3}$, this gives a description of homotopy groups of S^{3} in terms of link groups.

Question

Let L be an n-link in S^{3}. A knot K in $S^{3} \backslash L$ is called almost trivial if K bounds a disk in $S^{3} \backslash d_{i} L$ for each $1 \leq i \leq n$.
A knot K in $S^{3} \backslash L$ is called weakly almost trivial if K represents an element in $A_{1} \cap A_{2} \cap \cdots \cap A_{n}$.
A knot K in $S^{3} \backslash L$ is called commutatorized if K represents an element in the symmetric commutator subgroup $\left[\left[A_{1}, A_{2}\right], \ldots, A_{n}\right] s$.
Question. Let L be an n-link. Let K be a weakly almost trivial knot in the link complement $S^{3} \backslash L$. Does there exist a connected sum decomposition

$$
K=K^{\prime} \# K^{\prime \prime}
$$

such that K^{\prime} is a commutaorized knot in $S^{3} \backslash L$ and $K^{\prime \prime}$ is an almost trivial knot in $S^{3} \backslash L$?

$\mathfrak{T h a n k} \mathfrak{Y o u !}$

