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The Origins and the Goal

Originally, the notion of parity for 1-dimensional (virtual) knots was
devised by V.O. Mantutov in 2009. Parity theory for 1-knots (classical,
virtual, etc.) boils down to the decoration of crossings, that is codimension
1 singularities of the projection.
Parity allows to refine many knot invariants via parity as well as to create
new invariants valued in knot diagrams. Due to existence of
“picture-valued” (that is, diagram-valued) invariants the following
principle holds for virtual knots:
If a diagram is complicated enough, it can be found as a subdiagram in
any equivalent diagram.
A natural idea is to do a similar singularities decoration for objects in
higher dimensions. In the present talk that is done for two-dimensional
knots.
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2-Knots

Definition

A 2-knot (resp. an n-component 2-link) is a smooth embedding in
general position of a 2-sphere S2 (resp. disjoint union of n spheres) into
R4 or S4 up to isotopy.

If one takes Sg instead of S2, one obtains a surface knot (or surface link in
case of many components).
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2-Knot Diagrams: in R3

Definition

A diagram of a 2-knot K in R3 is a projection in a general position of K
in R4 to a subspace R3.

Two diagrams represent the same knot if and only if they can be related
by a finite sequence of Roseman moves.
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Roseman Move I
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Roseman Move II

D.A. Fedoseev (ICS RAS, Moscow, Russia) Parities on 2-knots and 2-links July, 3-7, 2017 6 / 19



Roseman Move III
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Roseman Move IV
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Roseman Move V
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Roseman Move VI
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Roseman Move VII
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2-Knots Diagrams: Spherical

Definition

A spherical diagram is a 2-complex consisting of a sphere S and a set D
of marked curves on it such that:

1 Every curve is either closed or ends with a cusp, the number of cusps
is finite;

2 Every curve of the set D is paired with exactly one curve of that set,
one of the paired curves is marked as upper, both curves are oriented
(marked with arrows) up to simultaneous orientation change;

3 Two curves ending in the same cusp are paired and both arrows either
look towards the cusp or away from it;

4 If two curves intersect, the curves paired with them intersect as well
(thus a triple point appears on the sphere S three times).

Roseman moves have natural analogs on spherical diagrams.
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Gaussian Parity

Definition

Consider an arbitrary double point x on a double line γ and consider its
two preimages x1, x2. Connect the point x1 with the point x2 by a path η̃
so that the behaviour of γ near the endpoints is compatible. the Gaussian
parity of the double line γ is the parity of the number of intersections
between η̃ and the preimages of double lines of the knot.
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Gaussian Parity and Roseman Moves

The following properties are satisfied:

1 Moves R4 and R6 yield that every double line ending in a cusp is
even.

2 Two double lines from the second move (located “closely”) have the
same the Gaussian parity.

3 The double line in the right-hand side of the fourth move is even.

4 The third move creates a double line; it is always even.

5 Among the lines meeting at a triple point there is an even number of
odd ones.

6 There are three double lines in the fifth move. There are either two or
zero odd among them.

Those properties can be regarded as axioms.
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More On Parity Axioms

But those axioms can be rewritten in a more concise and
“moves-independent” way:

1 Continuity axiom. Parity is constant along double lines.

2 Selfcrossing axiom. A double line ending with a cusp is even.

3 Triple point axiom. The sum of parities of three double lines meeting
in a triple point equals 0 mod 2.

4 Correspondence axiom. There is a natural bijection between boundary
double point on the left and right sides of a Roseman move induced
by the bijection of the diagram leaves. The parities of the
corresponding points are the same.
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Even More on Parity Axioms

There is one more way to construct an equivalent system of axioms:

1 Continuity axiom. Parity is constant along double lines.
2 Loop axiom. A double line being an edge of a cylinder over a loop is

even.
3 Bigon axiom. The sum of parities of two double lines being the edges

of a cylinder over a bigon equals 0 mod 2.
4 Triangle axiom. The sum of parities of three double lines being the

edges of a cylinder over a triangle equals 0 mod 2.
5 Correspondence axiom. The parities of the corresponding boundary

double points are the same.

Finally we can define parity in the following way:

Definition

Let L be a class of 2-links in R3, and let A be the set of double line of
their diagrams. A mapping P : A → Z2 is called parity if it satisfies the
axioms 1–5.
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Parity Theory Extensions

There are various ways to delve further into parity theories. Just two of
them:

1 Weak parity

2 Group-valued parity
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