Decomposition of knot complements into right-angled polyhedra

Andrei Vesnin
July, 03, 2017. $11^{00}-12^{00}$
Sobolev Institute of Mathematics, Novosibirsk, Russia
Dalian University of Technology, Dalian, China

Motivation: hyperbolic 3-manifolds

Let \mathbb{H}^{3} denote a 3 -dimensional hyperbolic space (Lobachevskii space \mathbb{L}^{3} in Russia).

Let Γ be a discrete subgroup of Isom $\left(\mathbb{H}^{3}\right)$ acting without fixed points.
The quotient space \mathbb{H}^{3} / Γ is a hyperbolic 3 -manifold.
Klein, 1929, "Non-Euclidean Geometry": Examples of compact hyperbolic 3-manifolds are unknown.

First examples of hyperbolic 3-manifolds of finite volume:

- Gieseking, 1914: non-compact, non-orientable.
- Löbell, 1931: compact, orientable.
- Weber, Seifert, 1933: compact, orientable "dodecahedral hyperbolic space '.

Aim of the talk

We will discuss the construction of hyperbolic 3-manifolds from right-angled polyhedra.

- Start with a bounded right-angled polyhedron R in \mathbb{H}^{3}.
- Which combinatorial polyhedra can be realized as right-angled in \mathbb{H}^{3} ?
- What is a structure of the set of right-angled polyhedra?
- Consider the group G generated by reflections in faces of R.
- Choose a torsion-free subgroup Г of G.
- How to find a torsion-free subgroup? Use colourings of a polyhedron!
- Do different colourings lead to different manifolds?

Outline of the talk

1. The set of all bounded right-angled hyperbolic polyhedra
2. Constructing manifolds from Pogorelov polyhedra
3. The set of all ideal right-angled hyperbolic polyhedra
4. Constructing manifolds from ideal right-angled polyhedra

The set of all bounded
right-angled hyperbolic polyhedra

Uniqueness of acute-angled polyhedra in \mathbb{H}^{n}

Let \mathbb{H}^{n} denote an n-dimensional hyperbolic space.
Andreev, 1970: Any bounded acute-angled (all dihedral angles are at most $\pi / 2$) polyhedron in \mathbb{H}^{n} is uniquely determined by its combinatorial type and dihedral angles.

We will discuss two classes of acute-angled polyhedra:

- Coxeter polyhedra, with dihedral angles of the form $\pi / k, k \geq 2$.
- Right-angled polyhedra, with all dihedral angles $\pi / 2$.

Bounded right-angled polyhedra in \mathbb{H}^{3}

Pogorelov, 1967: A polyhedron P can be realized in \mathbb{H}^{3} as a bounded right-angled polyhedron if and only if
(1) any vertex is incident to 3 edges (polyhedron is said to be simple);
(2) any face has at least 5 sides;
(3) if a simple closed circuit on the surface of the polyhedron separates two faces (prismatic circuit), then it intersects at least 5 edges;
(4) P can be realized in \mathbb{H}^{3} with dihedral angled less than $\pi / 2$.

Andreev, 1970: Condition (4) is not necessary.

Conditions (1) and (3) imply (2).

Conditions (1) and (2) do not imply (3)

The following polyhedron satisfies (1) and (2), but not (3):

There is a closed circuit which separates two 6-gonal faces (top and bottom), but intersects only 4 edges.

Pogorelov polyhedra

Def. A combinatorial polyhedron is Pogorelov polyhedron if

- any vertex is incident to 3 edges (simple polyhedron);
- any prismatic circuit intersects at least 5 edges.

Russian and Ukrainian academician Aleksei Vasil'evich Pogorelov [1919-2002].

A combinatorial polyhedron can be realised as a bounded right-angled polyhedron in \mathbb{H}^{3} if and only if it is Pogorelov polyhedron.

Fullerenes are Pogorelov polyhedra

If simple polyhedron has only 5 - and 6 -gonal faces, it is called fullerene.

Došlić, 2003; Buchshaber - Erokhovets, 2015: If P is a fullerene, then any prismatic circuit intersects at least 5 edges.

Cor. Fullerenes are Pogorelov polyhedra.

A right-angled dodecahedron in \mathbb{H}^{3}

Combinatorially simplest Pogorelov polyhedron is a dodecahedron.

Tiling of \mathbb{H}^{3} by right-angled dodecahedra, I

Tiling of \mathbb{H}^{3} by right-angled dodecahedra, II

Tiling of $\mathrm{f} \mathbb{H}^{3}$ by right-angled dodecahedra, III

Tiling of $\mathrm{f} \mathbb{H}^{3}$ by right-angled dodecahedra, IV

* Images are due to Vladimir Bulatov, www.bulatov.org

An infinite subfamily of the set of Pogorelov polyhedra

V, 1987:: For any integer $n \geqslant 5$ define a right-angled $(2 n+2)$-hedron $L(n)$. Polyhedra $L(5)$ and $L(6)$ look as following:

Polyhedra $L(n)$ are said to be Löbelll polyhedra.

German mathematician Frank Richard Löbell [1893-1964].

Two moves for bounded right-angled polyhedra, I

Let \mathcal{R} be the set of all bounded right-angled polyhedra in \mathbb{H}^{3}.
Inoue, 2008: Two moves on \mathcal{R}.

- Composition / Decomposition: Consider two combinatorial polyhedra R_{1}, R_{2} with k-gonal faces $F_{1} \subset R_{1}$ and $F_{2} \subset R_{2}$. Then their composition is a union $R=R_{1} \cup_{F_{1}=F_{2}} R_{2}$.

If $R_{1}, R_{2} \in \mathcal{R}$, then $R \in \mathcal{R}$.

Two moves for bounded right-angled polyhedra, II

- Removing / adding edge: move from R to $R-e$ and inverse:

polyhedron R

$$
n_{3}+n_{4}-4
$$

$$
n_{2}-1
$$

polyhedron $R-e$

If $R \in \mathcal{R}$ and e is such that faces F_{1} and F_{2} have at least 6 sides each and e is not a part of prismatic 5-circuit, then $R-e \in \mathcal{R}$.

Adding edge is known as a Endo-Kroto move for fullerenes. In the case of fullerences $n_{1}=n_{2}=6$ and $n_{3}=n_{4}=5$.

Reducing to Löbell polyhedra

Inoue, 2008: For any $P_{0} \in \mathcal{R}$ there exists a sequence of unions of right-angled hyperbolic polyhedra P_{1}, \ldots, P_{k} such that:

- each set P_{i} is obtained from P_{i-1} by decomposition or edge removing,
- any union P_{k} consists of Löbell polyhedra.

Moreover,

$$
\operatorname{vol}\left(P_{0}\right) \geqslant \operatorname{vol}\left(P_{1}\right) \geqslant \operatorname{vol}\left(P_{2}\right) \geqslant \ldots \geqslant \operatorname{vol}\left(P_{k}\right)
$$

The set of Pogorelov polyhedra

More detailed description:

- Any Löbell polyhedron is non-reducible: it doesn't admit edge removing to another Pogorelov polyhedron or a decomposition into two Pogorelov polyhedra.
- Suppose polyhedron P is Pogorelov, but not Löbell. Then P either can be reduces to another Pogorelov polyhedron by removing an edge, or can be decomposed into two Pogorelov polyhedra, one of which is a dodecahedron.

Lobachevsky function

To express volumes of hyperbolic 3-polyhedra we use the Lobachevsky function

$$
\Lambda(\theta)=-\int_{0}^{\theta} \log |2 \sin (t)| \mathrm{d} t .
$$

The volume formula for Löbell polyhedra

To each Pogorelov polyhedron R we correspond volume vol (R) of its right-angled realization in \mathbb{H}^{3}.
V., 1998: Let $L(n)$ denote the Löbell polyhedron, $n \geq 5$. Then

$$
\operatorname{vol}(L(n))=\frac{n}{2}\left[2 \Lambda\left(\theta_{n}\right)+\Lambda\left(\theta_{n}+\frac{\pi}{n}\right)+\Lambda\left(\theta_{n}-\frac{\pi}{n}\right)+\Lambda\left(\frac{\pi}{2}-2 \theta_{n}\right)\right]
$$

where

$$
\theta_{n}=\frac{\pi}{2}-\arccos \left(\frac{1}{2 \cos (\pi / n)}\right) .
$$

The census of bounded right-angled polyhedra

Inoue, 2008: The dodecahedron $L(5)$ and the polyhedron $L(6)$ are the first and the second smallest volume bounded right-angled hyperbolic polyhedra.

Shmel'kov - V., 2011: The eleven smallest volume bounded right-angled hyperbolic polyhedra:

1	$4.3062 \ldots$	$L(5)$	7	$8.6124 \ldots$	$L(5) \cup L(5)$
2	$6.0230 \ldots$	$L(6)$	8	$8.6765 \ldots$	$L(6)_{3}^{3}$
3	$6.9670 \ldots$	$L(6)^{1}$	9	$8.8608 \ldots$	$L(6)_{1}^{3}$
4	$7.5632 \ldots$	$L(7)$	10	$8.9456 \ldots$	$L(6)_{2}^{3}$
5	$7.8699 \ldots$	$L(6)_{1}^{2}$	11	$9.0190 \ldots$	$L(8)$
6	$8.0002 \ldots$	$L(6)_{2}^{2}$			

Adding of edges: from $L(6)$ to $L(6)^{1}$

The polyhedron $L(6)$ and possible faces to add an edge (Endo-Kroto move):

The polyhedron $L(6)^{1}$ and possible faces to add an edge:

Volume bounds from combinatorics of polyhedra

Atkinson, 2009: Let P be a bounded right-angled hyperbolic polyhedron with F faces. Then

$$
\frac{v_{8}}{16} F-\frac{3 v_{8}}{8} \leqslant \operatorname{vol}(P)<\frac{5 v_{3}}{4} F-\frac{35 v_{3}}{4},
$$

where $v_{8}=3.66386 \ldots$ and $v_{3}=1.01494 \ldots$

Matveev - Petronio - V., 2009: For Löbell polyhedron L with F faces we have $\operatorname{vol}(L) \rightarrow \frac{5 v_{3}}{8} F-\frac{5 v_{3}}{4}$ as $F \rightarrow \infty$.

Inoue, arxiv:1512.0176:
The first 825 bounded right-angled polyhedra are constructed by compositions and edge surgeries. The 825 -th smallest right-angled polyhedron has volume 13.4203....

The modern census of bounded right-angled polyhedra

Shmel'kov - V.: about 3.000 smallest bounded right-angled polyhedra.

Bounded right-angled polyhedra in $\mathbb{H}^{n}, n>3$

There is a bounded right-angled polyhedron in \mathbb{H}^{4}. Combinatorically it is the 120 -cell, the convex regular 4-polytope with the boundary composed of 120 dodecahedral cells with 4 meeting at each vertex.

Nikulin 1981: No bounded right-angled polyhedra in \mathbb{H}^{n} for $n>4$.
Open problem. Are there bounded right-angled polyhedra in \mathbb{H}^{4} which are not obtained from the 120 -cell?

Constructing manifolds from Pogorelov polyhedra

Stabilizer of a vertex

Suppose

- P be a bounded $\pi / 2$-polyhedron in \mathbb{H}^{3};
- G be the group generated by reflections in faces of P.

For each vertex $v \in P$ its stabilizer in G is generated by three reflections g_{1}, g_{2}, g_{3} and is isomorphic to the eight-element abelian group $(\mathbb{Z} / 2 \mathbb{Z}) \oplus(\mathbb{Z} / 2 \mathbb{Z}) \oplus(\mathbb{Z} / 2 \mathbb{Z})=\mathbb{Z}_{2}^{3}$.

Local linear independence

The group \mathbb{Z}_{2}^{3} can be regarded as the finite vector space over the field $G F(2)$ with a basis

$$
\{(1,0,0),(0,1,0),(0,0,1)\} .
$$

Al-Jubouri, 1980: The kernel $\operatorname{Ker} \varphi$ of an epimorphism $\varphi: G \rightarrow \mathbb{Z}_{2}^{3}$ is torsion-free if and only if for any vertex v of P images of reflections in faces incident to v are linearly independent in \mathbb{Z}_{2}^{3}.

The proof was done for a dodecahedron, but can be easy generalized.
Thus, if φ satisfies this local linear independence property then $M=\mathbb{H}^{3} / \operatorname{Ker} \varphi$ is a closed hyperbolic 3-manifold (orientable or non-orientable) constructed from eight copies of P.

Four colours

Elements $\alpha=(1,0,0), \beta=(0,1,0), \gamma=(0,0,1)$ and $\delta=\alpha+\beta+\gamma=(1,1,1)$ are such that any three of them are linearly independent in \mathbb{Z}_{2}^{3}.
V., 1987: If $\varphi: G \rightarrow \mathbb{Z}_{2}^{3}$ is such that for any generator g of G its image $\varphi(g)$ belongs to $\{\alpha, \beta, \gamma, \delta\}$ then $\operatorname{Ker} \varphi$ consists of orientation-preserving isometries.

Cor. If an epimorphism $\varphi: G \rightarrow \mathbb{Z}_{2}^{3}$ is such that

- for any generator g of G its image $\varphi(g)$ belongs to $\{\alpha, \beta, \gamma, \delta\}$;
- for any two adjacent faces their images are different;
then $M=\mathbb{H}^{3} / \operatorname{Ker} \varphi$ is a closed orientable hyperbolic 3-manifold.
Cor. Any 4-colouring of faces of a Pogorelov polyhedron P determ a closed orientable hyperbolic 3-manifold.

Tiling around a vertex, I

P

Tiling around a vertex, II

Tiling around a vertex, III

$P \cup g_{1}(P) \cup g_{2}(P) \cup g_{3}(P) \cup g_{1} g_{2}(P) \cup g_{1} g_{3}(P) \cup g_{2} g_{3}(P)$

Tiling around a vertex, IV

A fundamental polyhedron for $\operatorname{Ker} \varphi<G$:
$P \cup g_{1}(P) \cup g_{2}(P) \cup g_{3}(P) \cup g_{1} g_{2}(P) \cup g_{1} g_{3}(P) \cup g_{2} g_{3}(P) \cup g_{1} g_{2} g_{3}(P)$

Example: the Löbell manifold

The classical Löbell manifold, the first example of closed orientable hyperbolic 3-manifold in 1931, can be obtained in this way: from the following 4-colouring of $L(6)$:

F. Löbell, Beispiele geschlossene dreidimensionaler Clifford-Kleinischer Räume negative Krümmung, Ber. Verh. Sächs. Akad. Lpz., Math.-Phys. KI. 83 (1931), 168-174.

When two 4-colourings induce the same manifolds?

Let P be a bounded right-angled hyperbolic polyhedron. Let G be generated by reflections in faces of P, and Σ be the symmetry group of P.

A group G is said to be naturally maximal if $\langle G, \Sigma\rangle$ is maximal discrete group, i.e. is not a proper subgroup of any discrete group of Isom $\left(\mathbb{H}^{3}\right)$.
V.: Let G be non-arithmetic and naturally maximal. Let $\varphi_{1}, \varphi_{2}: G \rightarrow \mathbb{Z}_{2}^{3}$ be epimorphisms induced by two 4 -colourings. Manifolds $\mathbb{H}^{3} / \operatorname{Ker}\left(\varphi_{1}\right)$ and $\mathbb{H}^{3} / \operatorname{Ker}\left(\varphi_{2}\right)$ are isometric if and only if 4 -coloruings are equivalent.

Example. Let $L(n), n \geq 5$, be the Löbell polyhedron and $G(n)$ be the group generated by reflections in faces of it.

1. Roeder: if $n \neq 5,6,8$ then group $G(n)$ is non-arithmetic;
2. Mednykh: if $n \geq 6$ then $G(n)$ is naturally maximal.

Equivalence of 4-colourings

The toric topology approach.
Buchstaber, Erochovets, Masuda, Panov, Park, 2017:
"Cohomological rigidity of manifolds defined by right-angled 3-dimensional polytopes".

Buchstaber, Panov, 2016:
Let $M=(P, \varphi)$ and $M^{\prime}=\left(P^{\prime}, \varphi^{\prime}\right)$ be hyperbolic 3-manifolds, corresponding to 4-colourings of Pogorelov polyhedra: φ for P and φ^{\prime} for P^{\prime}. Then M and M^{\prime} are diffeomorphic if and only if pairs (P, φ) and $\left(P^{\prime}, \varphi^{\prime}\right)$ are equivalent.

The set of all ideal right-angled hyperbolic polyhedra

Ideal right-angled antiprisms

Let $\mathcal{A}_{n}, n \geqslant 3$, be an ideal (with all vertices at infinity) n-antiprism in \mathbb{H}^{3} with dihedral angles $\pi / 2$. Antiprism \mathcal{A}_{7} is presented it the figure.

It is known from Thurston's lecture notes (1978) that

$$
\operatorname{vol}\left(\mathcal{A}_{n}\right)=2 n\left[\Lambda\left(\frac{\pi}{4}+\frac{\pi}{2 n}\right)+\Lambda\left(\frac{\pi}{4}-\frac{\pi}{2 n}\right)\right]
$$

* Images are due to Wikipedia, www.wikipedia.org

Ideal right-angled octahedron

Observe that \mathcal{A}_{3} is an ideal right-angled octahedron.

Compare with the diagram of the Borromean rings.

Moves on ideal polyhedra

Let \mathcal{A} be the set of all ideal right-angled polyhedra in \mathbb{H}^{3}. Define a move on the set \mathcal{A}.

- Edge twisting: combinatorial transformation from $A \in \mathcal{A}$ to A^{*} :

Example. An edge-twisting applied to the 4-antiprism.

The set of all ideal right-angled polyhedra

Shmel'kov, 2011 (MSc diploma work, still unpublished):

1. If $A \in \mathcal{A}$ then $A^{*} \in \mathcal{A}$.
2. The volume increases under an edge twisting move.
3. Every ideal right-angled polyhedron $A \in \mathcal{A}$ can be constructed by a finitely many edge twisting moves from an n-antiprism \mathcal{A}_{n} for some n.

Ideas of the proof.

1. Rivin, 1992: a polytope $A \in \mathcal{A}$ if and only is 1 -skeleton of A is 4 -valent and cyclically 6 -connected.
2. Schläfli volume variation formula.
3. Brinkmann, Greenberg, Greenhill, McKay, Thomas, Wollan, 2005: generation of simple quadangulations of the sphere.

Census of ideal right-angled polyhedra

Cor. The octahedron \mathcal{A}_{3} and polyhedron \mathcal{A}_{4} are the first and the second smallest volume ideal right-angled polyhedra.

The nineteen smallest volume ideal right-anged hyperbolic polyhedra:

1	$3.6638 \ldots$	\mathcal{A}_{3}	11	$10.9915 \ldots$	$\mathcal{A}_{5}^{* *}(6)$
2	$6.0230 \ldots$	\mathcal{A}_{4}	12	$11.1362 \ldots$	$\mathcal{A}_{5}^{* *}(5)$
3	$7.3277 \ldots$	\mathcal{A}_{4}^{*}	13	$11.1362 \ldots$	$\mathcal{A}_{5}^{* *}(2)$
4	$8.1378 \ldots$	\mathcal{A}_{5}	14	$11.4472 \ldots$	$\mathcal{A}_{5}^{* *}(3)$
5	$8.6124 \ldots$	$\mathcal{A}_{4}^{* *}$	15	$11.8017 \ldots$	$\mathcal{A}_{4}^{* * * *}(1)$
6	$9.6869 \ldots$	\mathcal{A}_{5}^{*}	16	$11.8017 \ldots$	$\mathcal{A}_{6}^{*}(1)$
7	$10.1494 \ldots$	$\mathcal{A}_{4}^{* * *}$	17	$12.0460 \ldots$	$\mathcal{A}_{4}^{* * * *}(2)$
8	$10.1494 \ldots$	\mathcal{A}_{6}	18	$12.0460 \ldots$	$\mathcal{A}_{6}^{*}(2)$
9	$10.8060 \ldots$	$\mathcal{A}_{5}^{* *}(1)$	19	$12.1062 \ldots$	\mathcal{A}_{7}
10	$10.9915 \ldots$	$\mathcal{A}_{5}^{* *}(4)$			

The smallest volume decomposible link

Cor. The Whitehead link complement is the smallest volume link complement that can be decomposed into ideal right-angled polyhedra (one copy of the octahedron $\mathcal{A}(3)$):

The structure of the volume set

Shmel'kov - V.: about 2.000 smallest ideal right-angled polyhedra.

Constructing manifolds from ideal right-angled polyhedra

Construction

Let $A \in \mathcal{A}$ and $G(A)$ be a group, generated by reflections. Let $\varphi: G \rightarrow \mathbb{Z}_{2}^{2}$ be a surjective homomorphism given by a \mathbb{Z}_{2}^{2}-colouring of faces of A. Then $M=\mathbb{H}^{3} / \operatorname{Ker} \varphi$ is a cusped hyperbolic 3-manifold.

Moreover, M is orientable if φ corresponds to a 2-colouring (colours $\left.(1,0),(0,1) \in \mathbb{Z}_{2}^{2}\right)$ and non-orientable if it corresponds to a 3 -colouring (colours $\left.(1,0),(0,1),(1,1) \in \mathbb{Z}_{2}^{2}\right)$.
Example. Consider an ideal right-angled octahedron $A(3)$. it is easy to see that $A(3)$ admits one 2 -colouring and three 3 -colourings as presented in the figure. Denote corresponding epimorphisms by $\varphi_{0}, \varphi_{1}, \varphi_{2}$, and φ_{3}.

Kernel of the epimorphism

For the epimorphism $\varphi_{0}: G(A(3)) \rightarrow \mathbb{Z}_{2}^{2}$ denote $\Gamma_{0}=\operatorname{Ker} \varphi_{0}$.
A fundamental polyhedron $\widetilde{A}(3)$ of Γ_{0} consists of 4 copies of $A(3)$:

Manifold constraction

\widetilde{A} has 16 faces, 14 ideal vertices

$$
A, B, C, C_{1}, D, D_{2}, E, E_{1}, E_{2}, E_{12}, F, F_{1}, F_{2}, F_{12}
$$

Γ_{0} is generated by isometries x_{1}, \ldots, x_{8}, where $x_{i}: X_{i}^{-1} \rightarrow X_{i}$.
Vertices of \widetilde{A} split in 6 classes of equivalent under Γ_{0} :

$$
\{A\},\{B\},\left\{C, C_{1}\right\},\left\{D, D_{2}\right\},\left\{E, E_{1}, E_{2}, E_{12}\right\},\left\{F, F_{1}, F_{2}, F_{12}\right\} .
$$

Each class gives a tori cusp of a manifold $M_{0}=\mathbb{H}^{3} / \Gamma_{0}$.
M_{0} is complement of a 6 -chain link. vol $M_{0}=14,65544951 \ldots$

Non-orientable cusped manifolds

We have 3-colourings in non-trivial elements of $\mathbb{Z}_{2}^{2}: \varphi_{1}, \varphi_{2}$, and φ_{3}.
All of them lead to non-orientable manifolds with 6 cusps.
Cusps of $M_{1}=\mathbb{H}^{3} / \operatorname{Ker} \varphi_{1}: 3$ tori and 3 Klein bottles.
Cusps of $M_{2}=\mathbb{H}^{3} / \operatorname{Ker} \varphi_{2}: 2$ tori and 4 Klein bottles.
Cusps of $M_{3}=\mathbb{H}^{3} / \operatorname{Ker} \varphi_{3} ; 6$ Klein bottles.

Open problem. Is it true in general case that non-equivalent 3 -colourings give non-homeomorphic manifolds?

Finite-volume right-angled polyhedra in $\mathbb{H}^{n}, n \geq 3$

Examples are known for $n \leq 8$ only. Consider simplices T^{3}, \ldots, T^{8} given by Coxeter diagrams:

"Black" subdiagrams correspond to finite Coxeter groups: $\left|B_{3}\right|=2^{3} \cdot 3$!, $\left|F_{4}\right|=1152,\left|D_{5}\right|=2^{4} \cdot 5!,\left|E_{6}\right|=72 \cdot 6!,\left|E_{7}\right|=72 \cdot 8!,\left|E_{8}\right|=192 \cdot 10!$.

Dufour, 2010: No finite volume $\pi / 2$-polyhedra in \mathbb{H}^{n} for $n>12$.
Open problem. What about dimensions $n=9,10,11,12$?

General construction

Let $P \subset \mathbb{H}^{n}$ be a right-angled polyhedron and $G(P)$ be a group, generated by reflections in hyperfaces. Denote the set of hyperfaces \mathcal{F}. Let homomorphism $\phi: G(P) \rightarrow \mathbb{Z}_{2}^{k}, k \geq n$ be identified with a colouring $\phi: \mathcal{F} \rightarrow \mathbb{Z}_{2}^{k}$ of hyperfaces. Let colouring $\phi: \mathcal{F} \rightarrow \mathbb{Z}_{2}^{k}$ be regular, that means

- for any finite vertex of P colours of incident hyperfaces are linear independent as vectors in \mathbb{Z}_{2}^{k},
- for any edge of P colours of incident hyperfaces are linear independent.
V. 1987; Davis and Janushkevich, 1991; Garrison and Scott, 2003; Kolpakov, Martelli and Tschantz, 2015; Kolpakov and Slavich, 2016:

Then $\Gamma=\operatorname{Ker} \phi$ is torsion-free and $M=\mathbb{H}^{n} / \Gamma$ is a hyperbolic manifold.

4-manifold with 1 cusp

Kolpakov, Slavich, 2016:
There are orientable hyperbolic 4-manifolds with 1 cusp.
The manifold \mathcal{X} has unique cusp which is S^{1}-fibre over a Klein bottle.
The manifold \mathcal{Y} has unique cusp which is a 3 -torus.

Open problem. Are there hyperbolic 5 -manifolds with 1 cusp?

References

- A. Vesnin, Right-angled polytopes and hyperbolic 3-manifolds, Russian Math. Surveys, 72:2 (2017), 147-190.

Thank you!

