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Motivation: hyperbolic 3-manifolds

Let H3 denote a 3-dimensional hyperbolic space (Lobachevskii space L3

in Russia).

Let � be a discrete subgroup of Isom(H3) acting without fixed points.

The quotient space H3/� is a hyperbolic 3-manifold.

Klein, 1929, “Non-Euclidean Geometry”: Examples of compact

hyperbolic 3-manifolds are unknown.

First examples of hyperbolic 3-manifolds of finite volume:

• Gieseking, 1914: non-compact, non-orientable.

• Löbell, 1931: compact, orientable.

• Weber, Seifert, 1933: compact, orientable “dodecahedral

hyperbolic space ’.
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Aim of the talk

We will discuss the construction of hyperbolic 3-manifolds from

right-angled polyhedra.

• Start with a bounded right-angled polyhedron R in H3.

• Which combinatorial polyhedra can be realized as right-angled in H3?

• What is a structure of the set of right-angled polyhedra?

• Consider the group G generated by reflections in faces of R .

• Choose a torsion-free subgroup � of G .

• How to find a torsion-free subgroup? Use colourings of a polyhedron!

• Do di↵erent colourings lead to di↵erent manifolds?
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Outline of the talk

1. The set of all bounded right-angled hyperbolic polyhedra

2. Constructing manifolds from Pogorelov polyhedra

3. The set of all ideal right-angled hyperbolic polyhedra

4. Constructing manifolds from ideal right-angled polyhedra
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The set of all bounded

right-angled hyperbolic polyhedra



Uniqueness of acute-angled polyhedra in Hn

Let Hn denote an n-dimensional hyperbolic space.

Andreev, 1970: Any bounded acute-angled (all dihedral angles are at

most ⇡/2) polyhedron in Hn is uniquely determined by its combinatorial

type and dihedral angles.

We will discuss two classes of acute-angled polyhedra:

• Coxeter polyhedra, with dihedral angles of the form ⇡/k , k � 2.

• Right-angled polyhedra, with all dihedral angles ⇡/2.
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Bounded right-angled polyhedra in H3

Pogorelov, 1967: A polyhedron P can be realized in H3 as a bounded

right-angled polyhedron if and only if

(1) any vertex is incident to 3 edges (polyhedron is said to be simple);

(2) any face has at least 5 sides;

(3) if a simple closed circuit on the surface of the polyhedron separates

two faces (prismatic circuit), then it intersects at least 5 edges;

(4) P can be realized in H3 with dihedral angled less than ⇡/2.

Andreev, 1970: Condition (4) is not necessary.

Conditions (1) and (3) imply (2).
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Conditions (1) and (2) do not imply (3)

The following polyhedron satisfies (1) and (2), but not (3):

There is a closed circuit which separates two 6-gonal faces (top and

bottom), but intersects only 4 edges.
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Pogorelov polyhedra

Def. A combinatorial polyhedron is Pogorelov polyhedron if

• any vertex is incident to 3 edges (simple polyhedron);

• any prismatic circuit intersects at least 5 edges.

Russian and Ukrainian academician Aleksei Vasil’evich Pogorelov [1919–2002].

A combinatorial polyhedron can be realised as a bounded right-angled

polyhedron in H3 if and only if it is Pogorelov polyhedron.
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Fullerenes are Pogorelov polyhedra

If simple polyhedron has only 5- and 6-gonal faces, it is called fullerene.

Došlić, 2003; Buchshaber – Erokhovets, 2015: If P is a fullerene,

then any prismatic circuit intersects at least 5 edges.

Cor. Fullerenes are Pogorelov polyhedra.
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A right-angled dodecahedron in H3

Combinatorially simplest Pogorelov polyhedron is a dodecahedron.
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Tiling of H3 by right-angled dodecahedra, I
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Tiling of H3 by right-angled dodecahedra, II
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Tiling of f H3 by right-angled dodecahedra, III
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Tiling of f H3 by right-angled dodecahedra, IV

⇤ Images are due to Vladimir Bulatov, www.bulatov.org
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An infinite subfamily of the set of Pogorelov polyhedra

V, 1987:: For any integer n > 5 define a right-angled (2n + 2)-hedron

L(n). Polyhedra L(5) and L(6) look as following:
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Polyhedra L(n) are said to be Löbelll polyhedra.

German mathematician Frank Richard Löbell [1893–1964].
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Two moves for bounded right-angled polyhedra, I

Let R be the set of all bounded right-angled polyhedra in H3.

Inoue, 2008: Two moves on R.

• Composition / Decomposition: Consider two combinatorial

polyhedra R

1

,R
2

with k-gonal faces F
1

⇢ R

1

and F

2

⇢ R

2

. Then

their composition is a union R = R

1

[F
1

=F
2

R

2

.

If R
1

,R
2

2 R, then R 2 R.
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Two moves for bounded right-angled polyhedra, II

• Removing / adding edge: move from R to R � e and inverse:

n

2

n

1

n

3

n

4

e

polyhedron R

n

2

� 1

n

1

� 1

n

3

+ n

4

� 4

polyhedron R � e

If R 2 R and e is such that faces F
1

and F

2

have at least 6 sides

each and e is not a part of prismatic 5-circuit, then R � e 2 R.

Adding edge is known as a Endo–Kroto move for fullerenes. In the case

of fullerences n
1

= n

2

= 6 and n

3

= n

4

= 5.
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Reducing to Löbell polyhedra

Inoue, 2008: For any P

0

2 R there exists a sequence of unions of

right-angled hyperbolic polyhedra P

1

, . . . ,Pk such that:

• each set Pi is obtained from Pi�1

by decomposition or edge

removing,

• any union Pk consists of Löbell polyhedra.

Moreover,

vol(P
0

) > vol(P
1

) > vol(P
2

) > . . . > vol(Pk).
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The set of Pogorelov polyhedra

More detailed description:

• Any Löbell polyhedron is non-reducible: it doesn’t admit edge

removing to another Pogorelov polyhedron or a decomposition into

two Pogorelov polyhedra.

• Suppose polyhedron P is Pogorelov, but not Löbell. Then P either

can be reduces to another Pogorelov polyhedron by removing an

edge, or can be decomposed into two Pogorelov polyhedra, one of

which is a dodecahedron.
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Lobachevsky function

To express volumes of hyperbolic 3-polyhedra we use the Lobachevsky

function

⇤(✓) = �
✓Z

0

log |2 sin(t)| dt.
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The volume formula for Löbell polyhedra

To each Pogorelov polyhedron R we correspond volume vol(R) of its

right-angled realization in H3.

V., 1998: Let L(n) denote the Löbell polyhedron, n � 5. Then

vol(L(n)) =
n

2

h
2⇤(✓n) + ⇤

⇣
✓n +

⇡

n

⌘
+ ⇤

⇣
✓n �

⇡

n

⌘
+ ⇤

⇣⇡
2
� 2✓n

⌘i
,

where

✓n =
⇡

2
� arccos

✓
1

2 cos(⇡/n)

◆
.

20



The census of bounded right-angled polyhedra

Inoue, 2008: The dodecahedron L(5) and the polyhedron L(6) are the

first and the second smallest volume bounded right-angled hyperbolic

polyhedra.

Shmel’kov – V., 2011: The eleven smallest volume bounded

right-angled hyperbolic polyhedra:

1 4.3062 . . . L(5) 7 8.6124 . . . L(5) [ L(5)

2 6.0230 . . . L(6) 8 8.6765 . . . L(6)3
3

3 6.9670 . . . L(6)1 9 8.8608 . . . L(6)3
1

4 7.5632 . . . L(7) 10 8.9456 . . . L(6)3
2

5 7.8699 . . . L(6)2
1

11 9.0190 . . . L(8)

6 8.0002 . . . L(6)2
2
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Adding of edges: from L(6) to L(6)1

The polyhedron L(6) and possible faces to add an edge (Endo–Kroto

move):

6

6

The polyhedron L(6)1 and possible faces to add an edge:

6

6 6
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Volume bounds from combinatorics of polyhedra

Atkinson, 2009: Let P be a bounded right-angled hyperbolic polyhedron

with F faces. Then

v

8

16
F � 3v

8

8
6 vol(P) <

5v
3

4
F � 35v

3

4
,

where v

8

= 3.66386 . . . and v

3

= 1.01494 . . ..

Matveev – Petronio - V., 2009: For Löbell polyhedron L with F faces

we have vol(L) ! 5v
3

8 F � 5v
3

4 as F ! 1.

Inoue, arxiv:1512.0176:

The first 825 bounded right-angled polyhedra are constructed by

compositions and edge surgeries. The 825-th smallest right-angled

polyhedron has volume 13.4203 . . ..
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The modern census of bounded right-angled polyhedra

Shmel’kov – V.: about 3.000 smallest bounded right-angled polyhedra.
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Bounded right-angled polyhedra in Hn, n > 3

There is a bounded right-angled polyhedron in H4. Combinatorically it is

the 120-cell, the convex regular 4-polytope with the boundary composed

of 120 dodecahedral cells with 4 meeting at each vertex.

Nikulin 1981: No bounded right-angled polyhedra in Hn for n > 4.

Open problem. Are there bounded right-angled polyhedra in H4 which

are not obtained from the 120-cell?
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Constructing manifolds from

Pogorelov polyhedra



Stabilizer of a vertex

Suppose

• P be a bounded ⇡/2–polyhedron in H3;

• G be the group generated by reflections in faces of P .

For each vertex v 2 P its stabilizer in G is generated by three reflections

g

1

, g
2

, g
3

and is isomorphic to the eight-element abelian group

(Z/2Z)� (Z/2Z)� (Z/2Z) = Z3

2

.
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Local linear independence

The group Z3

2

can be regarded as the finite vector space over the field

GF (2) with a basis

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Al-Jubouri, 1980: The kernel Ker ' of an epimorphism ' : G ! Z3

2

is

torsion-free if and only if for any vertex v of P images of reflections in

faces incident to v are linearly independent in Z3

2

.

The proof was done for a dodecahedron, but can be easy generalized.

Thus, if ' satisfies this local linear independence property then

M = H3/Ker ' is a closed hyperbolic 3-manifold (orientable or

non-orientable) constructed from eight copies of P .
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Four colours

Elements ↵ = (1, 0, 0), � = (0, 1, 0), � = (0, 0, 1) and

� = ↵+ � + � = (1, 1, 1) are such that any three of them are linearly

independent in Z3

2

.

V., 1987: If ' : G ! Z3

2

is such that for any generator g of G its image

'(g) belongs to {↵,�, �, �} then Ker' consists of orientation-preserving

isometries.

Cor. If an epimorphism ' : G ! Z3

2

is such that

• for any generator g of G its image '(g) belongs to {↵,�, �, �};
• for any two adjacent faces their images are di↵erent;

then M = H3/Ker' is a closed orientable hyperbolic 3-manifold.

Cor. Any 4-colouring of faces of a Pogorelov polyhedron P determ a

closed orientable hyperbolic 3-manifold.
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Tiling around a vertex, I

P
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Tiling around a vertex, II

P [ g

1

(P) [ g

2

(P) [ g

3

(P)
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Tiling around a vertex, III

P [ g

1

(P) [ g

2

(P) [ g

3

(P) [ g

1

g

2

(P) [ g

1

g

3

(P) [ g

2

g

3

(P)
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Tiling around a vertex, IV

A fundamental polyhedron for Ker' < G :

P [ g

1

(P) [ g

2

(P) [ g

3

(P) [ g

1

g

2

(P) [ g

1

g

3

(P) [ g

2

g

3

(P) [ g

1

g

2

g

3

(P)
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Example: the Löbell manifold

The classical Löbell manifold, the first example of closed orientable

hyperbolic 3-manifold in 1931, can be obtained in this way: from the

following 4-colouring of L(6):

��HH

��HH

JJ⇠⇠

�
�

A
A

XX⌦⌦
⇠⇠ JJ

A
A

�
�

XX ⌦⌦
T

T
T

TT



 T

T
T
TT





⌦⌦

JJ ⌦⌦

JJ

�

�

��

�

�
�

�

�

�

�

�

↵

↵

F. Löbell, Beispiele geschlossene dreidimensionaler Cli↵ord–Kleinischer

Räume negative Krümmung, Ber. Verh. Sächs. Akad. Lpz., Math.-Phys.

Kl. 83 (1931), 168–174.
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When two 4-colourings induce the same manifolds?

Let P be a bounded right-angled hyperbolic polyhedron. Let G be

generated by reflections in faces of P , and ⌃ be the symmetry group of P .

A group G is said to be naturally maximal if hG ,⌃i is maximal discrete

group, i.e. is not a proper subgroup of any discrete group of Isom(H3).

V.: Let G be non-arithmetic and naturally maximal. Let '
1

,'
2

: G ! Z3

2

be epimorphisms induced by two 4-colourings. Manifolds H3/Ker('
1

)

and H3/Ker('
2

) are isometric if and only if 4-coloruings are equivalent.

Example. Let L(n), n � 5, be the Löbell polyhedron and G (n) be the

group generated by reflections in faces of it.

1. Roeder: if n 6= 5, 6, 8 then group G (n) is non-arithmetic;

2. Mednykh: if n � 6 then G (n) is naturally maximal.
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Equivalence of 4-colourings

The toric topology approach.

Buchstaber, Erochovets, Masuda, Panov, Park, 2017:

“Cohomological rigidity of manifolds defined by right-angled

3-dimensional polytopes”.

Buchstaber, Panov, 2016:

Let M = (P ,') and M

0 = (P 0,'0) be hyperbolic 3-manifolds,

corresponding to 4-colourings of Pogorelov polyhedra: ' for P and '0 for

P

0. Then M and M

0 are di↵eomorphic if and only if pairs (P ,') and

(P 0,'0) are equivalent.
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The set of all ideal right-angled

hyperbolic polyhedra



Ideal right-angled antiprisms

Let An, n > 3, be an ideal (with all vertices at infinity) n-antiprism in H3

with dihedral angles ⇡/2. Antiprism A
7

is presented it the figure.

It is known from Thurston’s lecture notes (1978) that

vol(An) = 2n
h
⇤
⇣⇡
4
+

⇡

2n

⌘
+ ⇤

⇣⇡
4
� ⇡

2n

⌘i
.

⇤ Images are due to Wikipedia, www.wikipedia.org
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Ideal right-angled octahedron

Observe that A
3

is an ideal right-angled octahedron.

Compare with the diagram of the Borromean rings.
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Moves on ideal polyhedra

Let A be the set of all ideal right-angled polyhedra in H3. Define a move

on the set A.

• Edge twisting: combinatorial transformation from A 2 A to A

⇤:

r r
r re

1

e

2

A

r r
r rr

v

A

⇤

Example. An edge-twisting applied to the 4-antiprism.
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The set of all ideal right-angled polyhedra

Shmel’kov, 2011 (MSc diploma work, still unpublished):

1. If A 2 A then A

⇤ 2 A.

2. The volume increases under an edge twisting move.

3. Every ideal right-angled polyhedron A 2 A can be constructed by

a finitely many edge twisting moves from an n-antiprism An for

some n.

Ideas of the proof.

1. Rivin, 1992: a polytope A 2 A if and only is 1-skeleton of A is

4-valent and cyclically 6-connected.

2. Schläfli volume variation formula.

3. Brinkmann, Greenberg, Greenhill, McKay, Thomas, Wollan, 2005:

generation of simple quadangulations of the sphere.
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Census of ideal right-angled polyhedra

Cor. The octahedron A
3

and polyhedron A
4

are the first and the second

smallest volume ideal right-angled polyhedra.

The nineteen smallest volume ideal right-anged hyperbolic polyhedra:

1 3.6638 . . . A
3

11 10.9915 . . . A⇤⇤
5

(6)

2 6.0230 . . . A
4

12 11.1362 . . . A⇤⇤
5

(5)

3 7.3277 . . . A⇤
4

13 11.1362 . . . A⇤⇤
5

(2)

4 8.1378 . . . A
5

14 11.4472 . . . A⇤⇤
5

(3)

5 8.6124 . . . A⇤⇤
4

15 11.8017 . . . A⇤⇤⇤⇤
4

(1)

6 9.6869 . . . A⇤
5

16 11.8017 . . . A⇤
6

(1)

7 10.1494 . . . A⇤⇤⇤
4

17 12.0460 . . . A⇤⇤⇤⇤
4

(2)

8 10.1494 . . . A
6

18 12.0460 . . . A⇤
6

(2)

9 10.8060 . . . A⇤⇤
5

(1) 19 12.1062 . . . A
7

10 10.9915 . . . A⇤⇤
5

(4)
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The smallest volume decomposible link

Cor. The Whitehead link complement is the smallest volume link

complement that can be decomposed into ideal right-angled polyhedra

(one copy of the octahedron A(3)):
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The structure of the volume set

Shmel’kov – V.: about 2.000 smallest ideal right-angled polyhedra.
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Constructing manifolds from

ideal right-angled polyhedra



Construction

Let A 2 A and G (A) be a group, generated by reflections. Let

' : G ! Z2

2

be a surjective homomorphism given by a Z2

2

–colouring of

faces of A. Then M = H3/Ker' is a cusped hyperbolic 3-manifold.

Moreover, M is orientable if ' corresponds to a 2-colouring (colours

(1, 0), (0, 1) 2 Z2

2

) and non-orientable if it corresponds to a 3-colouring

(colours (1, 0), (0, 1), (1, 1) 2 Z2

2

).

Example. Consider an ideal right-angled octahedron A(3). it is easy to

see that A(3) admits one 2-colouring and three 3-colourings as presented

in the figure. Denote corresponding epimorphisms by '
0

, '
1

, '
2

, and '
3

.

�

↵
� �

↵ ↵

� ↵

�

↵
� �

↵ ↵

� ↵

�

↵
� �

↵ ↵

� ↵

�

↵
� �

↵ �
� ↵
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Kernel of the epimorphism

For the epimorphism '
0

: G (A(3)) ! Z2

2

denote �
0

= Ker'
0

.

A fundamental polyhedron e
A(3) of �

0

consists of 4 copies of A(3):

A D

D

2

C

C

1

F

1

F

12

F

F

2

BB

BB

E

E

2

E

12

E

1

X

�1

1

X

�1

5

X

5

X

1

X

2

X

4

X

�1

4

X

�1

2

X

3

X

�1

3

X

8

X

�1

8

X

6

X

�1

6

X

7

X

�1

7
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Manifold constraction

e
A has 16 faces, 14 ideal vertices

A,B ,C ,C
1

,D,D
2

,E ,E
1

,E
2

,E
12

,F ,F
1

,F
2

,F
12

.

�
0

is generated by isometries x
1

, . . . , x
8

, where xi : X
�1

i ! Xi .

Vertices of e
A split in 6 classes of equivalent under �

0

:

{A}, {B}, {C ,C
1

}, {D,D
2

}, {E ,E
1

,E
2

,E
12

}, {F ,F
1

,F
2

,F
12

}.

Each class gives a tori cusp of a manifold M

0

= H3/�
0

.

M

0

is complement of a 6-chain link. volM
0

= 14, 65544951 . . ..

45



Non-orientable cusped manifolds

We have 3-colourings in non-trivial elements of Z2

2

: '
1

, '
2

, and '
3

.

All of them lead to non-orientable manifolds with 6 cusps.

Cusps of M
1

= H3/Ker'
1

: 3 tori and 3 Klein bottles.

Cusps of M
2

= H3/Ker'
2

: 2 tori and 4 Klein bottles.

Cusps of M
3

= H3/Ker'
3

; 6 Klein bottles.

Open problem. Is it true in general case that non-equivalent

3-colourings give non-homeomorphic manifolds?
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Finite-volume right-angled polyhedra in Hn, n � 3

Examples are known for n  8 only. Consider simplices T 3, . . . ,T 8 given

by Coxeter diagrams:

r r r r
F

T

3 (and B

3

) r r r r r
F

T

4 (and F

4

) r r r rr r
F

T

5 (and D

5

)

r r r r rr r
F

T

6 (and E

6

) r r r r r rr r
F

T

7 (and E

7

) r r r r r r rr r
F

T

8 (and E

8

)

“Black” subdiagrams correspond to finite Coxeter groups: |B
3

| = 23 · 3!,
|F

4

| = 1152, |D
5

| = 24 · 5!, |E
6

| = 72 · 6!, |E
7

| = 72 · 8!, |E
8

| = 192 · 10!.

Dufour, 2010: No finite volume ⇡/2–polyhedra in Hn for n > 12.

Open problem. What about dimensions n = 9, 10, 11, 12?
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General construction

Let P ⇢ Hn be a right-angled polyhedron and G (P) be a group,

generated by reflections in hyperfaces. Denote the set of hyperfaces F .

Let homomorphism � : G (P) ! Zk
2

, k � n be identified with a colouring

� : F ! Zk
2

of hyperfaces. Let colouring � : F ! Zk
2

be regular, that

means

• for any finite vertex of P colours of incident hyperfaces are linear

independent as vectors in Zk
2

,

• for any edge of P colours of incident hyperfaces are linear

independent.

V. 1987; Davis and Janushkevich, 1991; Garrison and Scott, 2003;

Kolpakov, Martelli and Tschantz, 2015; Kolpakov and Slavich,

2016:

Then � = Ker � is torsion-free and M = Hn/� is a hyperbolic manifold.
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4-manifold with 1 cusp

Kolpakov, Slavich, 2016:

There are orientable hyperbolic 4-manifolds with 1 cusp.

The manifold X has unique cusp which is S1-fibre over a Klein bottle.

The manifold Y has unique cusp which is a 3-torus.

Open problem. Are there hyperbolic 5-manifolds with 1 cusp?
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Thank you!
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