

Decomposition of knot complements into right-angled polyhedra

Andrei Vesnin July, 03, 2017. 11⁰⁰ – 12⁰⁰

Sobolev Institute of Mathematics, Novosibirsk, Russia Dalian University of Technology, Dalian, China Let \mathbb{H}^3 denote a 3-dimensional hyperbolic space (Lobachevskii space \mathbb{L}^3 in Russia).

Let Γ be a discrete subgroup of Isom (\mathbb{H}^3) acting without fixed points.

The quotient space \mathbb{H}^3/Γ is a hyperbolic 3-manifold.

Klein, 1929, "Non-Euclidean Geometry": Examples of compact hyperbolic 3-manifolds are unknown.

First examples of hyperbolic 3-manifolds of finite volume:

- Gieseking, 1914: non-compact, non-orientable.
- Löbell, 1931: compact, orientable.
- Weber, Seifert, 1933: compact, orientable "dodecahedral hyperbolic space '.

We will discuss the construction of hyperbolic 3-manifolds from right-angled polyhedra.

- Start with a bounded right-angled polyhedron R in \mathbb{H}^3 .
 - Which combinatorial polyhedra can be realized as right-angled in \mathbb{H}^3 ?
 - What is a structure of the set of right-angled polyhedra?
- Consider the group G generated by reflections in faces of R.
- Choose a torsion-free subgroup Γ of G.
 - How to find a torsion-free subgroup? Use colourings of a polyhedron!
 - Do different colourings lead to different manifolds?

- 1. The set of all bounded right-angled hyperbolic polyhedra
- 2. Constructing manifolds from Pogorelov polyhedra
- 3. The set of all ideal right-angled hyperbolic polyhedra
- 4. Constructing manifolds from ideal right-angled polyhedra

The set of all bounded right-angled hyperbolic polyhedra

Let \mathbb{H}^n denote an *n*-dimensional hyperbolic space.

Andreev, 1970: Any bounded acute-angled (all dihedral angles are at most $\pi/2$) polyhedron in \mathbb{H}^n is uniquely determined by its combinatorial type and dihedral angles.

We will discuss two classes of acute-angled polyhedra:

- Coxeter polyhedra, with dihedral angles of the form π/k , $k \ge 2$.
- Right-angled polyhedra, with all dihedral angles $\pi/2$.

Pogorelov, 1967: A polyhedron P can be realized in \mathbb{H}^3 as a bounded right-angled polyhedron if and only if

- (1) any vertex is incident to 3 edges (polyhedron is said to be simple);
- (2) any face has at least 5 sides;
- (3) if a simple closed circuit on the surface of the polyhedron separates two faces (prismatic circuit), then it intersects at least 5 edges;
- (4) *P* can be realized in \mathbb{H}^3 with dihedral angled less than $\pi/2$.

Andreev, 1970: Condition (4) is not necessary.

Conditions (1) and (3) imply (2).

Conditions (1) and (2) do not imply (3)

The following polyhedron satisfies (1) and (2), but not (3):

There is a closed circuit which separates two 6-gonal faces (top and bottom), but intersects only 4 edges.

Pogorelov polyhedra

Def. A combinatorial polyhedron is Pogorelov polyhedron if

- any vertex is incident to 3 edges (simple polyhedron);
- any prismatic circuit intersects at least 5 edges.

Russian and Ukrainian academician Aleksei Vasil'evich Pogorelov [1919-2002].

A combinatorial polyhedron can be realised as a bounded right-angled polyhedron in \mathbb{H}^3 if and only if it is Pogorelov polyhedron.

Fullerenes are Pogorelov polyhedra

If simple polyhedron has only 5- and 6-gonal faces, it is called fullerene.

Došlić, 2003; Buchshaber – Erokhovets, 2015: If *P* is a fullerene, then any prismatic circuit intersects at least 5 edges.

Cor. Fullerenes are Pogorelov polyhedra.

A right-angled dodecahedron in \mathbb{H}^3

Combinatorially simplest Pogorelov polyhedron is a dodecahedron.

Tiling of \mathbb{H}^3 by right-angled dodecahedra, I

Tiling of \mathbb{H}^3 by right-angled dodecahedra, II

Tiling of f \mathbb{H}^3 by right-angled dodecahedra, III

Tiling of f \mathbb{H}^3 by right-angled dodecahedra, IV

* Images are due to Vladimir Bulatov, www.bulatov.org

An infinite subfamily of the set of Pogorelov polyhedra

V, **1987**:: For any integer $n \ge 5$ define a right-angled (2n + 2)-hedron L(n). Polyhedra L(5) and L(6) look as following:

Polyhedra L(n) are said to be Löbelll polyhedra.

German mathematician Frank Richard Löbell [1893-1964].

Let \mathcal{R} be the set of all bounded right-angled polyhedra in \mathbb{H}^3 .

Inoue, 2008: Two moves on \mathcal{R} .

Composition / Decomposition: Consider two combinatorial polyhedra R₁, R₂ with k-gonal faces F₁ ⊂ R₁ and F₂ ⊂ R₂. Then their composition is a union R = R₁ ∪_{F1=F2} R₂.

If $R_1, R_2 \in \mathcal{R}$, then $R \in \mathcal{R}$.

Two moves for bounded right-angled polyhedra, II

• Removing / adding edge: move from R to R - e and inverse:

polyhedron R

polyhedron R - e

If $R \in \mathcal{R}$ and e is such that faces F_1 and F_2 have at least 6 sides each and e is not a part of prismatic 5-circuit, then $R - e \in \mathcal{R}$.

Adding edge is known as a Endo-Kroto move for fullerenes. In the case of fullerences $n_1 = n_2 = 6$ and $n_3 = n_4 = 5$.

Inoue, 2008: For any $P_0 \in \mathcal{R}$ there exists a sequence of unions of right-angled hyperbolic polyhedra P_1, \ldots, P_k such that:

- each set P_i is obtained from P_{i-1} by decomposition or edge removing,
- any union P_k consists of Löbell polyhedra.

Moreover,

 $\operatorname{vol}(P_0) \ge \operatorname{vol}(P_1) \ge \operatorname{vol}(P_2) \ge \ldots \ge \operatorname{vol}(P_k).$

More detailed description:

- Any Löbell polyhedron is non-reducible: it doesn't admit edge removing to another Pogorelov polyhedron or a decomposition into two Pogorelov polyhedra.
- Suppose polyhedron *P* is Pogorelov, but not Löbell. Then *P* either can be reduces to another Pogorelov polyhedron by removing an edge, or can be decomposed into two Pogorelov polyhedra, one of which is a dodecahedron.

Lobachevsky function

To express volumes of hyperbolic 3-polyhedra we use the Lobachevsky function

$$\Lambda(heta) = -\int\limits_{0}^{ heta} \log|2\sin(t)|\,\mathrm{d}t.$$

To each Pogorelov polyhedron R we correspond volume vol(R) of its right-angled realization in \mathbb{H}^3 .

V., 1998: Let L(n) denote the Löbell polyhedron, $n \ge 5$. Then

$$\operatorname{vol}(L(n)) = \frac{n}{2} \left[2\Lambda(\theta_n) + \Lambda\left(\theta_n + \frac{\pi}{n}\right) + \Lambda\left(\theta_n - \frac{\pi}{n}\right) + \Lambda\left(\frac{\pi}{2} - 2\theta_n\right) \right],$$

where

$$heta_n = rac{\pi}{2} - \arccos\left(rac{1}{2\cos(\pi/n)}
ight).$$

Inoue, 2008: The dodecahedron L(5) and the polyhedron L(6) are the first and the second smallest volume bounded right-angled hyperbolic polyhedra.

Shmel'kov – **V., 2011:** The eleven smallest volume bounded right-angled hyperbolic polyhedra:

1	4.3062	<i>L</i> (5)	7	8.6124	$L(5) \cup L(5)$
2	6.0230	<i>L</i> (6)	8	8.6765	$L(6)_{3}^{3}$
3	6.9670	$L(6)^{1}$	9	8.8608	$L(6)_{1}^{3}$
4	7.5632	L(7)	10	8.9456	$L(6)_{2}^{3}$
5	7.8699	$L(6)_1^2$	11	9.0190	L(8)
6	8.0002	$L(6)_{2}^{2}$			

Adding of edges: from L(6) to $L(6)^1$

The polyhedron L(6) and possible faces to add an edge (Endo-Kroto move):

The polyhedron $L(6)^1$ and possible faces to add an edge:

Atkinson, 2009: Let P be a bounded right-angled hyperbolic polyhedron with F faces. Then

$$\frac{\frac{v_8}{16}F-\frac{3v_8}{8}\leqslant \operatorname{vol}(P)<\frac{5v_3}{4}F-\frac{35v_3}{4},$$

where $v_8 = 3.66386...$ and $v_3 = 1.01494...$

Matveev – Petronio - V., 2009: For Löbell polyhedron *L* with *F* faces we have $vol(L) \rightarrow \frac{5v_3}{8}F - \frac{5v_3}{4}$ as $F \rightarrow \infty$.

Inoue, arxiv:1512.0176:

The first 825 bounded right-angled polyhedra are constructed by compositions and edge surgeries. The 825-th smallest right-angled polyhedron has volume 13.4203....

The modern census of bounded right-angled polyhedra

Shmel'kov – V.: about 3.000 smallest bounded right-angled polyhedra.

Bounded right-angled polyhedra in \mathbb{H}^n , n > 3

There is a bounded right-angled polyhedron in \mathbb{H}^4 . Combinatorically it is the 120-cell, the convex regular 4-polytope with the boundary composed of 120 dodecahedral cells with 4 meeting at each vertex.

Nikulin 1981: No bounded right-angled polyhedra in \mathbb{H}^n for n > 4.

Open problem. Are there bounded right-angled polyhedra in \mathbb{H}^4 which are not obtained from the 120-cell?

Constructing manifolds from Pogorelov polyhedra

Stabilizer of a vertex

Suppose

- *P* be a bounded $\pi/2$ -polyhedron in \mathbb{H}^3 ;
- G be the group generated by reflections in faces of P.

For each vertex $v \in P$ its stabilizer in *G* is generated by three reflections g_1, g_2, g_3 and is isomorphic to the eight-element abelian group $(\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}_2^3.$

The group \mathbb{Z}_2^3 can be regarded as the finite vector space over the field GF(2) with a basis

 $\{(1,0,0),(0,1,0),(0,0,1)\}.$

Al-Jubouri, 1980: The kernel Ker φ of an epimorphism $\varphi : G \to \mathbb{Z}_2^3$ is torsion-free if and only if for any vertex v of P images of reflections in faces incident to v are linearly independent in \mathbb{Z}_2^3 .

The proof was done for a dodecahedron, but can be easy generalized.

Thus, if φ satisfies this local linear independence property then $M = \mathbb{H}^3/\operatorname{Ker} \varphi$ is a closed hyperbolic 3-manifold (orientable or non-orientable) constructed from eight copies of P.

Four colours

Elements $\alpha = (1, 0, 0)$, $\beta = (0, 1, 0)$, $\gamma = (0, 0, 1)$ and $\delta = \alpha + \beta + \gamma = (1, 1, 1)$ are such that any three of them are linearly independent in \mathbb{Z}_2^3 .

V., 1987: If $\varphi : G \to \mathbb{Z}_2^3$ is such that for any generator g of G its image $\varphi(g)$ belongs to $\{\alpha, \beta, \gamma, \delta\}$ then Ker φ consists of orientation-preserving isometries.

Cor. If an epimorphism $\varphi: G \to \mathbb{Z}_2^3$ is such that

- for any generator g of G its image φ(g) belongs to {α, β, γ, δ};
- for any two adjacent faces their images are different;

then $M = \mathbb{H}^3 / \text{Ker } \varphi$ is a closed orientable hyperbolic 3-manifold.

Cor. Any 4-colouring of faces of a Pogorelov polyhedron *P* determ a closed orientable hyperbolic 3-manifold.

Tiling around a vertex, I

Ρ

Tiling around a vertex, II

$P \cup g_1(P) \cup g_2(P) \cup g_3(P)$

Tiling around a vertex, III

$P \cup g_1(P) \cup g_2(P) \cup g_3(P) \cup g_1g_2(P) \cup g_1g_3(P) \cup g_2g_3(P)$

Tiling around a vertex, IV

A fundamental polyhedron for Ker $\varphi < G$: $P \cup g_1(P) \cup g_2(P) \cup g_3(P) \cup g_1g_2(P) \cup g_1g_3(P) \cup g_2g_3(P) \cup g_1g_2g_3(P)$

Example: the Löbell manifold

The classical Löbell manifold, the first example of closed orientable hyperbolic 3-manifold in 1931, can be obtained in this way: from the following 4-colouring of L(6):

F. Löbell, Beispiele geschlossene dreidimensionaler Clifford-Kleinischer Räume negative Krümmung, Ber. Verh. Sächs. Akad. Lpz., Math.-Phys.
KI. 83 (1931), 168–174. Let P be a bounded right-angled hyperbolic polyhedron. Let G be generated by reflections in faces of P, and Σ be the symmetry group of P.

A group G is said to be naturally maximal if $\langle G, \Sigma \rangle$ is maximal discrete group, i.e. is not a proper subgroup of any discrete group of lsom(\mathbb{H}^3).

V.: Let G be non-arithmetic and naturally maximal. Let $\varphi_1, \varphi_2 : G \to \mathbb{Z}_2^3$ be epimorphisms induced by two 4-colourings. Manifolds $\mathbb{H}^3/\operatorname{Ker}(\varphi_1)$ and $\mathbb{H}^3/\operatorname{Ker}(\varphi_2)$ are isometric if and only if 4-coloruings are equivalent.

Example. Let L(n), $n \ge 5$, be the Löbell polyhedron and G(n) be the group generated by reflections in faces of it.

- 1. Roeder: if $n \neq 5, 6, 8$ then group G(n) is non-arithmetic;
- 2. Mednykh: if $n \ge 6$ then G(n) is naturally maximal.

The toric topology approach.

Buchstaber, Erochovets, Masuda, Panov, Park, 2017:

"Cohomological rigidity of manifolds defined by right-angled 3-dimensional polytopes".

Buchstaber, Panov, 2016:

Let $M = (P, \varphi)$ and $M' = (P', \varphi')$ be hyperbolic 3-manifolds, corresponding to 4-colourings of Pogorelov polyhedra: φ for P and φ' for P'. Then M and M' are diffeomorphic if and only if pairs (P, φ) and (P', φ') are equivalent.

The set of all ideal right-angled hyperbolic polyhedra

Ideal right-angled antiprisms

Let \mathcal{A}_n , $n \ge 3$, be an ideal (with all vertices at infinity) *n*-antiprism in \mathbb{H}^3 with dihedral angles $\pi/2$. Antiprism \mathcal{A}_7 is presented it the figure.

It is known from Thurston's lecture notes (1978) that

$$\operatorname{vol}(\mathcal{A}_n) = 2n \left[\Lambda \left(\frac{\pi}{4} + \frac{\pi}{2n} \right) + \Lambda \left(\frac{\pi}{4} - \frac{\pi}{2n} \right) \right]$$

* Images are due to Wikipedia, www.wikipedia.org

Ideal right-angled octahedron

Observe that \mathcal{A}_3 is an ideal right-angled octahedron.

Compare with the diagram of the Borromean rings.

Moves on ideal polyhedra

Let \mathcal{A} be the set of all ideal right-angled polyhedra in \mathbb{H}^3 . Define a move on the set \mathcal{A} .

• Edge twisting: combinatorial transformation from $A \in A$ to A^* :

Example. An edge-twisting applied to the 4-antiprism.

The set of all ideal right-angled polyhedra

Shmel'kov, 2011 (MSc diploma work, still unpublished):

- 1. If $A \in \mathcal{A}$ then $A^* \in \mathcal{A}$.
- 2. The volume increases under an edge twisting move.
- Every ideal right-angled polyhedron A ∈ A can be constructed by a finitely many edge twisting moves from an *n*-antiprism A_n for some n.

Ideas of the proof.

- Rivin, 1992: a polytope A ∈ A if and only is 1-skeleton of A is 4-valent and cyclically 6-connected.
- 2. Schläfli volume variation formula.
- 3. Brinkmann, Greenberg, Greenhill, McKay, Thomas, Wollan, 2005: generation of simple quadangulations of the sphere.

Cor. The octahedron A_3 and polyhedron A_4 are the first and the second smallest volume ideal right-angled polyhedra.

The nineteen smallest volume ideal right-anged hyperbolic polyhedra:

1	3.6638	\mathcal{A}_3	11	10.9915	$A_{5}^{**}(6)$
2	6.0230	\mathcal{A}_4	12	11.1362	$\mathcal{A}_5^{**}(5)$
3	7.3277	\mathcal{A}_4^*	13	11.1362	$A_{5}^{**}(2)$
4	8.1378	\mathcal{A}_5	14	11.4472	$A_{5}^{**}(3)$
5	8.6124	\mathcal{A}_4^{**}	15	11.8017	$\mathcal{A}_4^{****}(1)$
6	9.6869	\mathcal{A}_5^*	16	11.8017	$\mathcal{A}_6^*(1)$
7	10.1494	\mathcal{A}_4^{***}	17	12.0460	$A_4^{****}(2)$
8	10.1494	\mathcal{A}_6	18	12.0460	$A_{6}^{*}(2)$
9	10.8060	$\mathcal{A}_5^{**}(1)$	19	12.1062	\mathcal{A}_7
10	10.9915	$A_{5}^{**}(4)$			

Cor. The Whitehead link complement is the smallest volume link complement that can be decomposed into ideal right-angled polyhedra (one copy of the octahedron $\mathcal{A}(3)$):

The structure of the volume set

Shmel'kov – V.: about 2.000 smallest ideal right-angled polyhedra.

Constructing manifolds from ideal right-angled polyhedra

Construction

Let $A \in \mathcal{A}$ and G(A) be a group, generated by reflections. Let $\varphi : G \to \mathbb{Z}_2^2$ be a surjective homomorphism given by a \mathbb{Z}_2^2 -colouring of faces of A. Then $M = \mathbb{H}^3/\mathrm{Ker}\,\varphi$ is a cusped hyperbolic 3-manifold.

Moreover, M is orientable if φ corresponds to a 2-colouring (colours $(1,0), (0,1) \in \mathbb{Z}_2^2$) and non-orientable if it corresponds to a 3-colouring (colours $(1,0), (0,1), (1,1) \in \mathbb{Z}_2^2$).

Example. Consider an ideal right-angled octahedron A(3). it is easy to see that A(3) admits one 2-colouring and three 3-colourings as presented in the figure. Denote corresponding epimorphisms by φ_0 , φ_1 , φ_2 , and φ_3 .

Kernel of the epimorphism

For the epimorphism $\varphi_0 : G(A(3)) \to \mathbb{Z}_2^2$ denote $\Gamma_0 = \operatorname{Ker} \varphi_0$.

A fundamental polyhedron $\widetilde{A}(3)$ of Γ_0 consists of 4 copies of A(3):

Manifold constraction

 \widetilde{A} has 16 faces, 14 ideal vertices

 $A, B, C, C_1, D, D_2, E, E_1, E_2, E_{12}, F, F_1, F_2, F_{12}.$

 Γ_0 is generated by isometries x_1, \ldots, x_8 , where $x_i : X_i^{-1} \to X_i$.

Vertices of \widetilde{A} split in 6 classes of equivalent under Γ_0 :

 $\{A\}, \{B\}, \{C, C_1\}, \{D, D_2\}, \{E, E_1, E_2, E_{12}\}, \{F, F_1, F_2, F_{12}\}.$

Each class gives a tori cusp of a manifold $M_0 = \mathbb{H}^3/\Gamma_0$.

 M_0 is complement of a 6-chain link. vol $M_0 = 14,65544951...$

We have 3-colourings in non-trivial elements of \mathbb{Z}_2^2 : φ_1 , φ_2 , and φ_3 . All of them lead to non-orientable manifolds with 6 cusps. Cusps of $M_1 = \mathbb{H}^3/\text{Ker}\,\varphi_1$: 3 tori and 3 Klein bottles. Cusps of $M_2 = \mathbb{H}^3/\text{Ker}\,\varphi_2$: 2 tori and 4 Klein bottles. Cusps of $M_3 = \mathbb{H}^3/\text{Ker}\,\varphi_3$; 6 Klein bottles.

Open problem. Is it true in general case that non-equivalent 3-colourings give non-homeomorphic manifolds?

Finite-volume right-angled polyhedra in \mathbb{H}^n , $n \geq 3$

Examples are known for $n \le 8$ only. Consider simplices T^3, \ldots, T^8 given by Coxeter diagrams:

"Black" subdiagrams correspond to finite Coxeter groups: $|B_3| = 2^3 \cdot 3!$, $|F_4| = 1152$, $|D_5| = 2^4 \cdot 5!$, $|E_6| = 72 \cdot 6!$, $|E_7| = 72 \cdot 8!$, $|E_8| = 192 \cdot 10!$. **Dufour, 2010:** No finite volume $\pi/2$ -polyhedra in \mathbb{H}^n for n > 12. **Open problem.** What about dimensions n = 9, 10, 11, 12? Let $P \subset \mathbb{H}^n$ be a right-angled polyhedron and G(P) be a group, generated by reflections in hyperfaces. Denote the set of hyperfaces \mathcal{F} . Let homomorphism $\phi : G(P) \to \mathbb{Z}_2^k$, $k \ge n$ be identified with a colouring $\phi : \mathcal{F} \to \mathbb{Z}_2^k$ of hyperfaces. Let colouring $\phi : \mathcal{F} \to \mathbb{Z}_2^k$ be regular, that means

- for any finite vertex of P colours of incident hyperfaces are linear independent as vectors in Z^k₂,
- for any edge of *P* colours of incident hyperfaces are linear independent.

V. 1987; Davis and Janushkevich, 1991; Garrison and Scott, 2003; Kolpakov, Martelli and Tschantz, 2015; Kolpakov and Slavich, 2016:

Then $\Gamma = \text{Ker } \phi$ is torsion-free and $M = \mathbb{H}^n / \Gamma$ is a hyperbolic manifold.

Kolpakov, Slavich, 2016:

There are orientable hyperbolic 4-manifolds with 1 cusp.

The manifold \mathcal{X} has unique cusp which is S^1 -fibre over a Klein bottle.

The manifold $\mathcal Y$ has unique cusp which is a 3-torus.

Open problem. Are there hyperbolic 5-manifolds with 1 cusp?

• A. Vesnin, *Right-angled polytopes and hyperbolic 3-manifolds*, Russian Math. Surveys, **72:2** (2017), 147–190.

Thank you!