On classifying link maps in the 4-sphere

Ash Lightfoot, HSE

4th Russian-Chinese Conference on Knot Theory and Related Topics

$$
\text { July 3, } 2017
$$

Outline

1. Link Homotopy

2. Intersections of surfaces in a 4-manifold
3. Kirk's σ invariant of link homotopy
4. Techniques to address the open problem: does $\sigma=0 \Rightarrow$ nullhomotopic?

The Classification Problem

Link map:
$f: S^{p_{1}} \cup S^{p_{2}} \cup \ldots \cup S^{p_{n}} \rightarrow S^{m}, \quad f\left(S^{p_{i}}\right) \cap f\left(S^{p_{j}}\right)=\varnothing$ for $i \neq j$

The Classification Problem

Link map:

$$
f: S^{p_{1}} \cup S^{p_{2}} \cup \ldots \cup S^{p_{n}} \rightarrow S^{m}, \quad f\left(S^{p_{i}}\right) \cap f\left(S^{p_{j}}\right)=\varnothing
$$

Link homotopy $=$ homotopy through link maps

The Classification Problem

Link map:
$f: S^{p_{1}} \cup S^{p_{2}} \cup \ldots \cup S^{p_{n}} \rightarrow S^{m}, \quad f\left(S^{p_{i}}\right) \cap f\left(S^{p_{j}}\right)=\varnothing$ for $i \neq j$

Link homotopy $=$ homotopy through link maps

Problem: (For fixed p_{i}, n, m) Classify the set
$\frac{\left\{\text { link maps } f: S^{p_{1}} \cup S^{p_{2}} \cup \ldots \cup S^{p_{n}} \rightarrow S^{m}\right\}}{\text { link homotopy }}$

What do we know?

$$
S^{1} \cup S^{1} \cup \ldots \cup S^{1} \rightarrow S^{3}
$$

What do we know?

- Haebegger and Lin (1990):

$$
S^{1} \cup S^{1} \cup \ldots \cup S^{1} \rightarrow S^{3}
$$

classified up to link homotopy

What do we know?

- Haebegger and Lin (1990):

$$
S^{1} \cup S^{1} \cup \ldots \cup S^{1} \rightarrow S^{3}
$$

classified up to link homotopy

$$
S^{p_{1}} \cup S^{p_{2}} \cup \ldots \cup S^{p_{n}} \rightarrow S^{m}, 2<p_{i}<m-1
$$

What do we know?

- Haebegger and Lin (1990):

$$
S^{1} \cup S^{1} \cup \ldots \cup S^{1} \rightarrow S^{3}
$$ classified up to link homotopy

- Koschorke, a.o. (early 90s):

$$
\begin{aligned}
& S^{p_{1}} \cup S^{p_{2}} \cup \ldots \cup S^{p_{n}} \rightarrow S^{m}, 2<p_{i}<m-1 \\
& \text { classification } \longleftrightarrow \text { homotopy theory questions }
\end{aligned}
$$

in certain dimension ranges

Hard: links maps in S^{4}
$f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}, \quad f\left(S_{+}^{2}\right) \cap f\left(S_{-}^{2}\right)=\varnothing$
Write $f_{+}=\left.f\right|_{S_{+}^{2}}, \quad f_{-}=\left.f\right|_{S_{-}^{2}}$

Hard: links maps in S^{4}
$f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}, \quad f\left(S_{+}^{2}\right) \cap f\left(S_{-}^{2}\right)=\varnothing$
Write $f_{+}=\left.f\right|_{S_{+}^{2}}, \quad f_{-}=\left.f\right|_{S_{-}^{2}}$
Example:

Hard: links maps in S^{4}

$f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}, \quad f\left(S_{+}^{2}\right) \cap f\left(S_{-}^{2}\right)=\varnothing$
Write $f_{+}=\left.f\right|_{S_{+}^{2}}, \quad f_{-}=\left.f\right|_{S_{-}^{2}}$
Example:

Hard: links maps in S^{4}

$f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}, \quad f\left(S_{+}^{2}\right) \cap f\left(S_{-}^{2}\right)=\varnothing$
Write $f_{+}=\left.f\right|_{S_{+}^{2}}, \quad f_{-}=\left.f\right|_{S_{-}^{2}}$
Example:

Hard: links maps in S^{4}

$f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}, \quad f\left(S_{+}^{2}\right) \cap f\left(S_{-}^{2}\right)=\varnothing$
Write $f_{+}=\left.f\right|_{S_{+}^{2}}, \quad f_{-}=\left.f\right|_{s_{-}^{2}}$
Example:

Classifying link maps

$f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}, \quad f\left(S_{+}^{2}\right) \cap f\left(S_{-}^{2}\right)=\varnothing$
Write $f_{+}=\left.f\right|_{S_{+}^{2}}, \quad f_{-}=\left.f\right|_{S_{-}^{2}}$
Q. When is a link map link homotopic to the trivial link?
(Trivial link map: two embedded 2-spheres bounding disjoint 3-balls)

Classifying link maps

$f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}, \quad f\left(S_{+}^{2}\right) \cap f\left(S_{-}^{2}\right)=\varnothing$
Write $f_{+}=\left.f\right|_{S_{+}^{2}}, \quad f_{-}=\left.f\right|_{S_{-}^{2}}$
Q. When is a link map link homotopic to the trivial link? an embedding? (Bartels-Teichner '99)
(Trivial link map: two embedded 2-spheres bounding disjoint 3-balls)

Self-intersections of a 2-sphere

Consider a simple map $f: S^{2} \rightarrow \mathbb{R}^{4}$
$\triangleright \ldots$ that is immersed with two double points

Self-intersections of a 2 -sphere

Consider a simple map $f: S^{2} \rightarrow \mathbb{R}^{4}$
$\triangleright \ldots$ that is immersed with two double points of opposite sign

Self-intersections of a 2 -sphere

Consider a simple map $f: S^{2} \rightarrow \mathbb{R}^{4}$
$\triangleright \ldots$ that is immersed with two double points

Self-intersections of a 2 -sphere

Consider a simple map $f: S^{2} \rightarrow \mathbb{R}^{4}$
$\triangleright \ldots$ that is immersed with two double points

Self-intersections of a 2-sphere

Consider a simple map $f: S^{2} \rightarrow \mathbb{R}^{4}$
$\triangleright \ldots$ that is immersed with two double points

+

Self-intersections of a 2-sphere

Local picture of two dbl points of $f: S^{2} \rightarrow X^{4}$ with opp signs.

S^{2}

$$
f\left(S^{2}\right) \subset X
$$

Self-intersections of a 2-sphere

Local picture of two dbl points of $f: S^{2} \rightarrow X^{4}$ with opp signs.

S^{2}

$$
f\left(S^{2}\right) \subset X
$$

Self-intersections of a 2-sphere

Local picture of two dbl points of $f: S^{2} \rightarrow X^{4}$ with opp signs.

S^{2}

$$
f\left(S^{2}\right) \subset X
$$

Self-intersections of a 2-sphere

Local picture of two dbl points of $f: S^{2} \rightarrow X^{4}$ with opp signs.

S^{2}

$$
f\left(S^{2}\right) \subset X
$$

Self-intersections of a 2-sphere

Local picture of two dbl points of $f: S^{2} \rightarrow X^{4}$ with opp signs.

S^{2}

$$
f\left(S^{2}\right) \subset X
$$

Self-intersections of a 2-sphere

Local picture of two dbl points of $f: S^{2} \rightarrow X^{4}$ with opp signs.

S^{2}
$f\left(S^{2}\right) \subset X$

Self-intersections of a 2-sphere

Local picture of two dbl points of $f: S^{2} \rightarrow X^{4}$ with opp signs. $\ln \pi_{1}(X, \bullet): \alpha \beta \gamma^{-1} \simeq 1 \Rightarrow \beta \simeq \alpha^{-1} \gamma$

Self-intersections of a 2-sphere

Local picture of two dbl points of $f: S^{2} \rightarrow X^{4}$ with opp signs.
$\ln \pi_{1}(X, \bullet): \alpha \beta \gamma^{-1} \simeq 1 \Rightarrow \beta \simeq \alpha^{-1} \gamma$
So. "dbl point lot (continuous)
So: "dbl point loops" homotopic \Rightarrow "Whitney" disk

$$
(\alpha \simeq \gamma)
$$

$W \subset X$

s^{2}

$f\left(S^{2}\right) \subset X$

Self-intersections of a 2-sphere

Local picture of two dbl points of $f: S^{2} \rightarrow X^{4}$ with opp signs.
$\ln \pi_{1}(X, \bullet): \alpha \beta \gamma^{-1} \simeq 1 \Rightarrow \beta \simeq \alpha^{-1} \gamma$
So: "dbl pet (immersed)
So: "dbl point loops" homotopic \Rightarrow Whitney disk

$$
(\alpha \simeq \gamma)
$$

$W \subset X$

S^{2}

$f\left(S^{2}\right) \subset X$

Self-intersections of a 2-sphere

Local picture of two dbl points of $f: S^{2} \rightarrow X^{4}$ with opp signs.
$\ln \pi_{1}(X, \bullet): \alpha \beta \gamma^{-1} \simeq 1 \Rightarrow \beta \simeq \alpha^{-1} \gamma$
So: "dbl get (immersed)
So: "dbl point loops" homotopic \Rightarrow Whitney disk

$$
(\alpha \simeq \gamma)
$$

s^{2}

$$
f\left(S^{2}\right) \subset X
$$

Self-intersections of a 2-sphere

Local picture of two dbl points of $f: S^{2} \rightarrow X^{4}$ with opp signs.
$\ln \pi_{1}(X, \bullet): \alpha \beta \gamma^{-1} \simeq 1 \Rightarrow \beta \simeq \alpha^{-1} \gamma$
So: "dbl pet (immersed)
So: "dbl point loops" homotopic \Rightarrow Whitney disk

$$
(\alpha \simeq \gamma)
$$

$W \subset X$

S^{2}

$f\left(S^{2}\right) \subset X$

Self-intersections of a 2-sphere

Local picture of two dbl points of $f: S^{2} \rightarrow X^{4}$ with opp signs.
W embedded and misses $f\left(S^{2}\right) \Rightarrow$ can homotope f to remove double points

S^{2}

$$
f\left(S^{2}\right) \subset X
$$

Self-intersections of a 2-sphere

Local picture of two dbl points of $f: S^{2} \rightarrow X^{4}$ with opp signs.
W embedded and misses $f\left(S^{2}\right) \Rightarrow$ can homotope f to remove framed double points

S^{2}

$$
f\left(S^{2}\right) \subset X
$$

Wall self-intersection number μ
$f: S^{2} \rightarrow X^{4}$

Wall self-intersection number μ

$$
f: S^{2} \rightarrow X^{4}
$$

Wall self-intersection number μ

$$
\begin{aligned}
& f: S^{2} \rightarrow X^{4} \\
& \mu(f)=\sum_{p \in \operatorname{self}(f)} \operatorname{sign}_{p} \alpha_{p} \in \mathbb{Z}\left[\pi_{1}(X)\right]
\end{aligned}
$$

$$
S^{2}
$$

$$
f\left(S^{2}\right) \subset X
$$

Wall self-intersection number μ

$$
\begin{aligned}
& f: S^{2} \rightarrow X^{4}, \pi_{1}(X) \cong \mathbb{Z}=\left\langle t^{n}: n \in \mathbb{Z}\right\rangle \\
& \mu(f)=\sum_{p \in \operatorname{self}(f)} \operatorname{sign}_{p} t^{n_{p}} \in \mathbb{Z}\left[t, t^{-1}\right]
\end{aligned}
$$

S^{2}

$$
f\left(S^{2}\right) \subset X
$$

Wall self-intersection number μ

$$
\begin{aligned}
& f: S^{2} \rightarrow X^{4}, \pi_{1}(X) \cong \mathbb{Z}=\left\langle t^{n}: n \in \mathbb{Z}\right\rangle \\
& \mu(f)=\sum_{p \in \operatorname{self}(f)} \operatorname{sign}_{p} t^{n_{p}} \in \mathbb{Z}[t]
\end{aligned}
$$

S^{2}

$$
f\left(S^{2}\right) \subset X
$$

Wall self-intersection number μ

$$
\begin{aligned}
& f: S^{2} \rightarrow X^{4}, \pi_{1}(X) \cong \mathbb{Z}=\left\langle t^{n}: n \in \mathbb{Z}\right\rangle \\
& \mu(f)=\sum_{p \in \operatorname{self}(f)} \operatorname{sign}_{p}\left(t^{n_{p}}-1\right) \in \mathbb{Z}[t]
\end{aligned}
$$

$$
S^{2} \quad f\left(S^{2}\right) \subset X
$$

A, B - 2-disks or 2-spheres in $X^{4}, \pi_{1}(X) \cong \mathbb{Z}$
A, B - 2-disks or 2-spheres in $X^{4}, \pi_{1}(X) \cong \mathbb{Z}$ $\lambda(A, B)=\sum_{p \in A \cap B} \operatorname{sign}_{p} t^{n_{p}} \in \mathbb{Z}\left[t, t^{-1}\right]$

$$
S^{2}, D^{2}
$$

X
A, B - 2-disks or 2-spheres in $X^{4}, \pi_{1}(X) \cong \mathbb{Z}$ $\lambda(A, B)=\sum_{p \in A \cap B} \operatorname{sign}_{p} t^{n_{p}} \in \mathbb{Z}\left[t, t^{-1}\right]$

Kirk's link homotopy invariant σ

$$
f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}, \quad f_{ \pm}: S_{+}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)
$$

Kirk's link homotopy invariant σ

$f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}, \quad f_{ \pm}: S_{+}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$
After a link homotopy, $\pi_{1}\left(S^{4} \backslash f\left(S_{\mp}^{2}\right)\right) \cong \mathbb{Z}$

Kirk's link homotopy invariant σ

$f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}, \quad f_{ \pm}: S_{+}^{2} \rightarrow S^{4} \backslash f\left(S_{\mp}^{2}\right)$
After a link homotopy, $\pi_{1}\left(S^{4} \backslash f\left(S_{\mp}^{2}\right)\right) \cong \mathbb{Z}$

$$
\sigma_{ \pm}(f)=\mu\left(f_{ \pm}\right)=\sum_{p \in \operatorname{sel}\left(f_{ \pm}\right)} \operatorname{sign}_{p}\left(t^{n_{p}}-1\right) \in \mathbb{Z}[t]
$$

Kirk's link homotopy invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

$$
\sigma_{ \pm}(f)=\sum_{p \in \operatorname{self}\left(f_{ \pm}\right)} \operatorname{sign}_{p}\left(t^{n_{p}}-1\right) \in \mathbb{Z}[t]
$$

Example:

Kirk's link homotopy invariant $\sigma=\left(\sigma_{+}, \sigma_{-}\right)$

$$
\sigma_{ \pm}(f)=\sum_{p \in \operatorname{self}\left(f_{ \pm}\right)} \operatorname{sign}_{p}\left(t^{n_{p}}-1\right) \in \mathbb{Z}[t]
$$

Example:

$$
\sigma_{+}(f)=t^{1}-1
$$

$f\left(S_{+}^{2}\right) f\left(S_{-}^{2}\right)$

Properties of σ :

- Link homotopy invariant
- f link homotopic to embedding
$\Rightarrow \sigma_{+}(f)=0=\sigma_{-}(f)$
- $\sigma_{ \pm}(f)=0$
\Rightarrow can equip $f_{ \pm}$with Whitney disks in $S^{4} \backslash f\left(S_{\mp}^{2}\right)$

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

The Whitney disk intersects $f\left(S_{-}^{2}\right) \ldots$

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

The Whitney disk intersects $f\left(S_{-}^{2}\right) \ldots$ so can't use to homotope f_{-}to an embedding

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

The Whitney disk intersects $f\left(S_{-}^{2}\right) \ldots$ so can't use to homotope f_{-}to an embedding

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

The Whitney disk intersects $f\left(S_{-}^{2}\right) \ldots$ so can't use to homotope f_{-}to an embedding

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

The Whitney disk intersects $f\left(S_{-}^{2}\right) \ldots$ so can't use to homotope f_{-}to an embedding

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

The Whitney disk intersects $f\left(S_{-}^{2}\right) \ldots$ so can't use to homotope f_{-}to an embedding

Solution: try to form a "secondary" Whitney disk V

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

The Whitney disk intersects $f\left(S_{-}^{2}\right) \ldots$ so can't use to homotope f_{-}to an embedding

Solution: try to form a "secondary" Whitney disk V

Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

The Whitney disk intersects $f\left(S_{-}^{2}\right) \ldots$ so can't use to homotope f_{-}to an embedding

Solution: try to form a "secondary" Whitney disk V
\rightsquigarrow define a "secondary" invariant that obstructs this

Is σ the complete obstruction to embedding?

Some history:

- 1997: Li defined a secondary link htpy invariant $\omega=\left(\omega_{+}, \omega_{-}\right)$

Is σ the complete obstruction to embedding?

Some history:

- 1997: Li defined a secondary link htpy invariant $\omega=\left(\omega_{+}, \omega_{-}\right)$
- $\omega_{ \pm}$supposes $\sigma_{ \pm}=0$ and counts intersections between $f\left(S_{ \pm}\right)$and WDs in $S^{4}-f\left(S_{\mp}^{2}\right)$

Is σ the complete obstruction to embedding?

Some history:

- 1997: Li defined a secondary link htpy invariant $\omega=\left(\omega_{+}, \omega_{-}\right)$
- $\omega_{ \pm}$supposes $\sigma_{ \pm}=0$ and counts intersections between $f\left(S_{ \pm}\right)$and WDs in $S^{4}-f\left(S_{\mp}^{2}\right)$
- f link htpic to embedding $\Rightarrow \omega(f)=(0,0)$

Is σ the complete obstruction to embedding?

Some history:

- 1997: Li defined a secondary link htpy invariant $\omega=\left(\omega_{+}, \omega_{-}\right)$
- $\omega_{ \pm}$supposes $\sigma_{ \pm}=0$ and counts intersections between $f\left(S_{ \pm}\right)$and WDs in $S^{4}-f\left(S_{\mp}^{2}\right)$
- f link htpic to embedding $\Rightarrow \omega(f)=(0,0)$
- "Example" of link map f with $\sigma(f)=(0,0)$ but $\omega(f) \neq(0,0)$ \Rightarrow Counterexample

Is σ the complete obstruction to embedding?

Some history:

- 1997: Li defined a secondary link htpy invariant $\omega=\left(\omega_{+}, \omega_{-}\right)$
- $\omega_{ \pm}$supposes $\sigma_{ \pm}=0$ and counts intersections between $f\left(S_{ \pm}\right)$and WDs in $S^{4}-f\left(S_{\mp}^{2}\right)$
- f link htpic to embedding $\Rightarrow \omega(f)=(0,0)$
- "Example" of link map f with $\sigma(f)=(0,0)$ but $\omega(f) \neq(0,0)$
\Rightarrow Counterexample
- 1997: Pilz found mistake in Li's example (actually had $\omega=(0,0)$)

Nothing new: $\sigma(f)=(0,0) \Rightarrow \omega(f)=(0,0)$

Theorem (L.)

If $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ is a link map with both $\sigma_{+}(f)=0$ and $\sigma_{-}(f)=0$, then:
(after a link homotopy) each component $f_{ \pm}$can be equipped with framed, immersed Whitney disks whose interiors are disjoint from both $f\left(S_{+}^{2}\right)$ and $f\left(S_{-}^{2}\right)$.

Nothing new: $\sigma(f)=(0,0) \Rightarrow \omega(f)=(0,0)$

Theorem (L.)

If $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ is a link map with both $\sigma_{+}(f)=0$ and $\sigma_{-}(f)=0$, then:
(after a link homotopy) each component $f_{ \pm}$can be equipped with framed, immersed Whitney disks whose interiors are disjoint from both $f\left(S_{+}^{2}\right)$ and $f\left(S_{-}^{2}\right)$.

Nothing new: $\sigma(f)=(0,0) \Rightarrow \omega(f)=(0,0)$

Theorem (L.)

If $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ is a link map with both $\sigma_{+}(f)=0$ and $\sigma_{-}(f)=0$, then:
(after a link homotopy) each component $f_{ \pm}$can be equipped with framed, immersed Whitney disks whose interiors are disjoint from both $f\left(S_{+}^{2}\right)$ and $f\left(S_{-}^{2}\right)$.

Nothing new: $\sigma(f)=(0,0) \Rightarrow \omega(f)=(0,0)$

Theorem (L.)

Let $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ be a link map with $\sigma_{-}(f)=0$.
If $\sigma_{+}(f)=\sum_{p \in \operatorname{self}\left(f_{+}\right)}\left(t^{n_{p}}-1\right)$,
then $\omega_{-}(f)=\#\left\{p: n_{p} \equiv 2 \bmod 4\right\} \bmod 2$.

In particular, there are infinitely many link maps f with $\omega(f)=(0,0)$ but $\sigma(f) \neq(0,0)$.

Towards a better invariant?

Let $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ be a link map.

Proposition (S. Kamada)

After a link homotopy, $f\left(S_{-}^{2}\right)$ is an unknotted immersion in S^{4} with $d \geq 0$ pairs of oppositely-signed double points.

Towards a better invariant?

Let $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ be a link map. Write $X_{-}=S^{4} \backslash f\left(S_{-}^{2}\right)$.

- $\pi_{1}\left(X_{-}\right) \cong \mathbb{Z}, \quad \mathbb{Z} \pi_{1}=\mathbb{Z}\left[t, t^{-1}\right]$

Towards a better invariant?

Construct generators of $\pi_{2}\left(X_{-}\right)=(\underset{i=1}{2 d} \mathbb{Z})\left[t, t^{-1}\right]$

- $H_{2}\left(X_{-}\right)=\mathbb{Z}^{2 d}$
- Generated by linking tori $\left\{T_{i}^{+}, T_{i}^{-}\right\}_{i=1}^{d}$

Towards a better invariant?

- Surger T_{p} to a 2-sphere A_{p}
- $A_{p}=\left(T_{p} \backslash\right.$ annulus $) \cup\left(D_{p} \cup D_{p}^{\prime}\right)$

Towards a better invariant?

- $A_{p}=\left(T_{p} \backslash\right.$ annulus $) \cup\left(D_{p} \cup D_{p}^{\prime}\right)$

Towards a better invariant?

- $A_{p}=\left(T_{p} \backslash\right.$ annulus $) \cup\left(D_{p} \cup D_{p}^{\prime}\right)$
- $\lambda\left(f_{+}, A_{p}\right)=(1+t) \lambda\left(f_{+}, D_{p}\right) \in \mathbb{Z} \pi_{1}\left(X_{-}\right)=\mathbb{Z}\left[t, t^{-1}\right]$

Towards a better invariant?

- $A_{p}=\left(T_{p} \backslash\right.$ annulus $) \cup\left(D_{p} \cup D_{p}^{\prime}\right)$
- $\lambda\left(f_{+}, A_{p}\right)=(1+t) \lambda\left(f_{+}, D_{p}\right) \in \mathbb{Z} \pi_{1}\left(X_{-}\right)=\mathbb{Z}\left[t, t^{-1}\right]$
- $\mu\left(A_{p}\right)=\operatorname{sign}_{p}(t-1) \in \mathbb{Z}[t]$

Towards a better invariant?

- $A_{p}=\left(T_{p} \backslash\right.$ annulus $) \cup\left(D_{p} \cup D_{p}^{\prime}\right)$

Towards a better invariant?

- $A_{p}=\left(T_{p} \backslash\right.$ annulus $) \cup\left(D_{p} \cup D_{p}^{\prime}\right)$
- $\lambda\left(f_{+}, D_{p}\right)=(1+t) \lambda\left(f_{+}, E_{p}\right)$

Towards a better invariant?

- $A_{p}=\left(T_{p} \backslash\right.$ annulus $) \cup\left(D_{p} \cup D_{p}^{\prime}\right)$
- $\lambda\left(f_{+}, D_{p}\right)=(1+t) \lambda\left(f_{+}, E_{p}\right)$
$\circ \lambda\left(f_{+}, E_{p}\right) \xrightarrow{t \mapsto 1} n_{p} \quad$ where $\sigma_{-}(f)=\sum_{p} \operatorname{sign}_{p}\left(t^{n_{p}}-1\right)$

Towards a better invariant?

Let $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ be a link map with $\sigma_{-}(f)=\operatorname{sign}_{p}\left(t^{n_{p}}-1\right)$.

Towards a better invariant?

Let $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ be a link map with $\sigma_{-}(f)=\operatorname{sign}_{p}\left(t^{n_{p}}-1\right)$.
After a link homotopy...

- $\pi_{2}\left(X_{-}\right)=\left(\underset{i=1}{\stackrel{2 d}{\gtrless} \mathbb{Z})}\left[t, t^{-1}\right]\right.$ has basis rep. by 2-spheres $\left\{A_{p}\right\}_{p}$
- $A_{p} \cap A_{q}=\varnothing$
- $\mu\left(A_{p}\right)=\operatorname{sign}_{p}(t-1)$
- $\lambda\left(f_{+}, A_{p}\right)=(1+t)^{2} c_{p}(t), \quad c_{p}(1)=n_{p}$

Towards a better invariant?

Let $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ be a link map with $\sigma_{-}(f)=\operatorname{sign}_{p}\left(t^{n_{p}}-1\right)$. After a link homotopy...

- $\pi_{2}\left(X_{-}\right)=\left(\underset{i=1}{\stackrel{2 d}{\gtrless} \mathbb{Z})}\left[t, t^{-1}\right]\right.$ has basis rep. by 2-spheres $\left\{A_{p}\right\}_{p}$
- $A_{p} \cap A_{q}=\varnothing$
- $\mu\left(A_{p}\right)=\operatorname{sign}_{p}(t-1)$
- $\lambda\left(f_{+}, A_{p}\right)=(1+t)^{2} c_{p}(t), \quad c_{p}(1)=n_{p}$
- So: $f_{+} \in \pi_{2}\left(X_{-}\right)$

$$
\Rightarrow f_{+}=\sum_{p} c_{p}(t) A_{p}, \quad c_{p}(1)=n_{p}
$$

Towards a better invariant?

Let $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ be a link map with $\sigma_{-}(f)=0$.
After a link homotopy...

$$
\circ f_{+}=\sum_{j} t^{n_{j}} A_{j}^{+}+t^{m_{j}} A_{j}^{-}, \quad \mu\left(A_{j}^{ \pm}\right)= \pm(t-1)
$$

Towards a better invariant?

Let $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ be a link map with $\sigma_{-}(f)=0$. After a link homotopy...

$$
\circ f_{+}=\sum_{j} t^{n_{j}} A_{j}^{+}+t^{m_{j}} A_{j}^{-}, \quad \mu\left(A_{j}^{ \pm}\right)= \pm(t-1)
$$

- Represented by tubing pairwise-tubed 2-spheres....

Towards a better invariant?

Let $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ be a link map with $\sigma_{-}(f)=0$.
After a link homotopy...

- $f_{+}=\sum_{j} t^{n_{j}} A_{j}^{+}+t^{m_{j}} A_{j}^{-}$,
$\mu\left(A_{j}^{ \pm}\right)= \pm(t-1)$
- Represented by tubing pairwise-tubed 2-spheres....

Towards a better invariant?
Let $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ be a link map with $\sigma_{-}(f)=0$.
After a link homotopy...

- $f_{+}=\sum_{j} t^{n_{j}} A_{j}^{+}+t^{m_{j}} A_{j}^{-}, \quad \mu\left(A_{j}^{ \pm}\right)= \pm(t-1)$
- Represented by tubing pairwise-tubed 2-spheres....

$$
A_{j}^{+}+t^{2} A_{j}^{-} \subset X_{-}
$$

Towards a better invariant?
Let $f: S_{+}^{2} \cup S_{-}^{2} \rightarrow S^{4}$ be a link map with $\sigma_{-}(f)=0$.
After a link homotopy...

- $f_{+}=\sum_{j} t^{n_{j}} A_{j}^{+}+t^{m_{j}} A_{j}^{-}, \quad \mu\left(A_{j}^{ \pm}\right)= \pm(t-1)$
- Represented by tubing pairwise-tubed 2-spheres....

$$
A_{j}^{+}+t^{2} A_{j}^{-} \subset X_{-}
$$

Still open

- Question: Does σ classify link maps?

Still open

- Question: Does σ classify link maps?
- Question: Can a secondary invariant for 3-component link maps be defined? Is it stronger than σ ?

