On classifying link maps in the 4-sphere

Ash Lightfoot, HSE

4th Russian-Chinese Conference on Knot Theory and Related Topics

July 3, 2017
Outline

1. Link Homotopy

2. Intersections of surfaces in a 4-manifold

3. Kirk’s σ invariant of link homotopy

4. Techniques to address the open problem:
 \[\text{does } \sigma = 0 \Rightarrow \text{nullhomotopic?} \]
The Classification Problem

Link map:

\[f : S^{p_1} \cup S^{p_2} \cup \ldots \cup S^{p_n} \to S^m, \quad f(S^{p_i}) \cap f(S^{p_j}) = \emptyset \]
for \(i \neq j \)
The Classification Problem

Link map:

\[f : S^{p_1} \cup S^{p_2} \cup \ldots \cup S^{p_n} \rightarrow S^m, \quad f(S^{p_i}) \cap f(S^{p_j}) = \emptyset \quad \text{for } i \neq j \]

Link homotopy = homotopy through link maps
The Classification Problem

Link map:
\[f : S^{p_1} \cup S^{p_2} \cup \ldots \cup S^{p_n} \to S^m, \quad f(S^{p_i}) \cap f(S^{p_j}) = \emptyset \]
for \(i \neq j \)

Link homotopy = homotopy through link maps

Problem: (For fixed \(p_i, n, m \)) Classify the set
\[
\{ \text{link maps } f : S^{p_1} \cup S^{p_2} \cup \ldots \cup S^{p_n} \to S^m \} \]
What do we know?

\[S^1 \cup S^1 \cup \ldots \cup S^1 \rightarrow S^3 \]
What do we know?

- Haebeegger and Lin (1990):
 \[S^1 \cup S^1 \cup \ldots \cup S^1 \rightarrow S^3 \]
 classified up to link homotopy
What do we know?

- Haebegger and Lin (1990):

\[S^1 \cup S^1 \cup \ldots \cup S^1 \rightarrow S^3 \]

classified up to link homotopy

\[S^{p_1} \cup S^{p_2} \cup \ldots \cup S^{p_n} \rightarrow S^m, \ 2 < p_i < m - 1 \]
What do we know?

- Haebegger and Lin (1990):

 \[S^1 \cup S^1 \cup \ldots \cup S^1 \rightarrow S^3 \]

 classified up to link homotopy

- Koschorke, a.o. (early 90s):

 \[S^{p_1} \cup S^{p_2} \cup \ldots \cup S^{p_n} \rightarrow S^m, \; 2 < p_i < m - 1 \]

 classification \longleftrightarrow \text{homotopy theory questions}

 in certain dimension ranges
Hard: links maps in S^4

\[f : S^2_+ \cup S^2_- \to S^4, \quad f(S^2_+) \cap f(S^2_-) = \emptyset \]

Write \(f_+ = f|_{S^2_+} \), \(f_- = f|_{S^2_-} \)
Hard: links maps in S^4

\[f : S^2_+ \cup S^2_- \to S^4, \quad f(S^2_+) \cap f(S^2_-) = \emptyset \]

Write $f_+ = f|_{S^2_+}$, $f_- = f|_{S^2_-}$

Example:
Hard: links maps in S^4

$f : S^2_+ \cup S^2_- \rightarrow S^4, \quad f(S^2_+) \cap f(S^2_-) = \emptyset$

Write $f_+ = f|_{S^2_+}, \quad f_- = f|_{S^2_-}$

Example:
Hard: links maps in S^4

$f : S^2_+ \cup S^2_- \to S^4$, \hspace{1cm} f(S^2_+) \cap f(S^2_-) = \emptyset$

Write $f_+ = f|_{S^2_+}$, $f_- = f|_{S^2_-}$

Example:

\[
\begin{array}{cccc}
\text{original} & \text{rotated} & \text{link} & \text{result} \\
\text{original} & \text{rotated} & \text{link} & \text{result} \\
\end{array}
\]
Hard: links maps in S^4

$f : S_+^2 \cup S_-^2 \to S^4, \quad f(S_+^2) \cap f(S_-^2) = \emptyset$

Write $f_+ = f \mid_{S_+^2}, \quad f_- = f \mid_{S_-^2}$

Example:
Classifying link maps

\[f : S_+^2 \cup S_-^2 \to S^4, \quad f(S_+^2) \cap f(S_-^2) = \emptyset \]

Write \(f_+ = f|_{S_+^2}, \quad f_- = f|_{S_-^2} \)

Q: When is a link map link homotopic to the trivial link?

(Trivial link map: two embedded 2-spheres bounding disjoint 3-balls)
Classifying link maps

\[f : S^2_+ \cup S^2_- \to S^4, \quad f(S^2_+) \cap f(S^2_-) = \emptyset \]

Write \(f_+ = f|_{S^2_+} \), \(f_- = f|_{S^2_-} \)

Q: When is a link map link homotopic to the trivial link? an embedding? (Bartels-Teichner ’99)

(Trivial link map: two embedded 2-spheres bounding disjoint 3-balls)
Self-intersections of a 2-sphere

Consider a simple map \(f : \mathbb{S}^2 \rightarrow \mathbb{R}^4 \)

\(\Rightarrow \) ... that is immersed
with two double points
Self-intersections of a 2-sphere

Consider a simple map $f : S^2 \to \mathbb{R}^4$

▷ ... that is immersed with two double points of opposite sign
Self-intersections of a 2-sphere

Consider a simple map $f : S^2 \to \mathbb{R}^4$

▷ ... that is immersed with two double points of opposite sign
Self-intersections of a 2-sphere

Consider a simple map \(f : S^2 \rightarrow \mathbb{R}^4 \)

▷ ... that is immersed with two double points of opposite sign
Self-intersections of a 2-sphere

Consider a simple map $f : S^2 \rightarrow \mathbb{R}^4$

▷ ... that is immersed with two double points of opposite sign
Self-intersections of a 2-sphere

Local picture of two dbl points of \(f : S^2 \to X^4 \) with opp signs.
Self-intersections of a 2-sphere

Local picture of two dbl points of $f : S^2 \to X^4$ with opp signs.
Self-intersections of a 2-sphere

Local picture of two dbl points of $f : S^2 \to X^4$ with opp signs.

$S^2 \quad f(S^2) \subset X$
Self-intersections of a 2-sphere

Local picture of two dbl points of $f : S^2 \to X^4$ with opp signs.
Self-intersections of a 2-sphere

Local picture of two dbl points of \(f : S^2 \rightarrow X^4 \) with opp signs.

\[S^2 \rightarrow f(S^2) \subset X \]
Self-intersections of a 2-sphere

Local picture of two dbl points of $f : S^2 \to X^4$ with opp signs.
Self-intersections of a 2-sphere

Local picture of two dbl points of \(f : S^2 \rightarrow X^4 \) with opp signs.

\[
\ln \pi_1(X, \bullet): \alpha \beta \gamma^{-1} \simeq 1 \Rightarrow \beta \simeq \alpha^{-1} \gamma
\]
Self-intersections of a 2-sphere

Local picture of two dbl points of $f : S^2 \to X^4$ with opp signs.

In $\pi_1(X, \bullet)$: $\alpha \beta \gamma^{-1} \simeq 1 \Rightarrow \beta \simeq \alpha^{-1} \gamma$

So: “dbl point loops” homotopic \Rightarrow “Whitney” disk

$W \subset X$

$f(S^2) \subset X$
Self-intersections of a 2-sphere

Local picture of two dbl points of $f : S^2 \to X^4$ with opp signs.

\[\text{In } \pi_1(X, \bullet): \alpha \beta \gamma^{-1} \simeq 1 \Rightarrow \beta \simeq \alpha^{-1} \gamma \]

So: “dbl point loops” homotopic \((\alpha \simeq \gamma) \) \Rightarrow \text{get (immersed) Whitney disk } W \subset X

\[f(S^2) \subset X \]
Self-intersections of a 2-sphere

Local picture of two dbl points of $f : S^2 \to X^4$ with opp signs.

In $\pi_1(X, \bullet)$: $\alpha \beta \gamma^{-1} \simeq 1 \Rightarrow \beta \simeq \alpha^{-1} \gamma$

So: “dbl point loops” homotopic \Rightarrow get (immersed) Whitney disk $W \subset X$

$S^2 \ni f(S^2) \subset X$
Self-intersections of a 2-sphere

Local picture of two dbl points of \(f : S^2 \to X^4 \) with opp signs.

In \(\pi_1(X, \bullet) \): \(\alpha \beta \gamma^{-1} \simeq 1 \Rightarrow \beta \simeq \alpha^{-1} \gamma \)

So: “dbl point loops” homotopic \(\Rightarrow \) get (immersed) Whitney disk \(W \subset X \)

\(S^2 \)

\(f(S^2) \subset X \)
Self-intersections of a 2-sphere

Local picture of two dbl points of $f : S^2 \to X^4$ with opp signs.

W embedded and misses $f(S^2) \Rightarrow$ can homotope f to remove double points

$S^2 \quad f(S^2) \subset X$
Self-intersections of a 2-sphere

Local picture of two dbl points of $f : S^2 \to X^4$ with opp signs.

W embedded and misses $f(S^2) \Rightarrow$ can homotope f to remove double points

$S^2 \quad f(S^2) \subset X$
Wall self-intersection number μ

$f : S^2 \to X^4$
Wall self-intersection number μ

$f : S^2 \to X^4$

$S^2 \ni \alpha_f

f(S^2) \subset X$
Wall self-intersection number μ

$$f : S^2 \to X^4$$

$$\mu(f) = \sum_{p \in \text{self}(f)} \text{sign}_p \alpha_p \in \mathbb{Z}[\pi_1(X)]$$
Wall self-intersection number μ

$$f : S^2 \rightarrow X^4, \, \pi_1(X) \cong \mathbb{Z} = \langle t^n : n \in \mathbb{Z} \rangle$$

$$\mu(f) = \sum_{p \in \text{self}(f)} \text{sign}_p t^{np} \in \mathbb{Z}[t, t^{-1}]$$

$$S^2 \xrightarrow{f} f(S^2) \subset X$$
Wall self-intersection number μ

$$f : S^2 \to X^4, \quad \pi_1(X) \cong \mathbb{Z} = \langle t^n : n \in \mathbb{Z} \rangle$$

$$\mu(f) = \sum_{p \in \text{self}(f)} \text{sign}_p t^{n_p} \in \mathbb{Z}[t]$$
Wall self-intersection number μ

$f : S^2 \to X^4$, $\pi_1(X) \cong \mathbb{Z} = \langle t^n : n \in \mathbb{Z} \rangle$

$$\mu(f) = \sum_{p \in \text{self}(f)} \text{sign}_p(t^{n_p} - 1) \in \mathbb{Z}[t]$$
Wall intersection form λ

A, B - 2-disks or 2-spheres in X^4, $\pi_1(X) \cong \mathbb{Z}$
Wall intersection form λ

A, B - 2-disk or 2-sphere in X^4, $\pi_1(X) \cong \mathbb{Z}$

$\lambda(A, B) = \sum_{\substack{p \in A \cap B}} \text{sign}_p t^{n_p} \in \mathbb{Z}[t, t^{-1}]$

S^2, D^2
Wall intersection form λ

A, B - 2-disks or 2-spheres in X^4, $\pi_1(X) \cong \mathbb{Z}$

$$\lambda(A, B) = \sum_{p \in A \cap B} \text{sign}_p t^{n_p} \in \mathbb{Z}[t, t^{-1}]$$

S^2, D^2
Kirk’s link homotopy invariant σ

$$f : S_+^2 \cup S_-^2 \to S^4, \quad f_\pm : S_+^2 \to S^4 \setminus f(S_+^2)$$
Kirk’s link homotopy invariant σ

$$f : S^2_+ \cup S^2_- \to S^4,$$ \quad $$f_\pm : S^2_+ \to S^4 \setminus f(S^2_+)$$

After a link homotopy, $\pi_1(S^4 \setminus f(S^2_+)) \cong \mathbb{Z}$
Kirk’s link homotopy invariant σ

$$f : S^2_+ \cup S^2_- \to S^4, \quad f_\pm : S^2_+ \to S^4 \setminus f(S^2_\mp)$$

After a link homotopy, $\pi_1(S^4 \setminus f(S^2_\mp)) \cong \mathbb{Z}$

$$\sigma_\pm(f) = \mu(f_\pm) = \sum_{p \in \text{self}(f_\pm)} \text{sign}_p(t^{n_p} - 1) \in \mathbb{Z}[t]$$
Kirk’s link homotopy invariant \(\sigma = (\sigma_+, \sigma_-) \)

\[
\sigma_{\pm}(f) = \sum_{p \in \text{self}(f_{\pm})} \text{sign}_p \left(t^{n_p} - 1 \right) \in \mathbb{Z}[t]
\]

Example:
Kirk’s link homotopy invariant $\sigma = (\sigma_+, \sigma_-)$

$$\sigma_{\pm}(f) = \sum_{p \in \text{self}(f_{\pm})} \text{sign}_p \left(t^{n_p} - 1 \right) \in \mathbb{Z}[t]$$

Example:

$f(S^2_+) f(S^2_-)$

$$\sigma_+(f) = t^1 - 1$$

$$\sigma_-(f) = - t^1 + 1$$
Properties of σ:

- Link homotopy invariant
- f link homotopic to embedding
 \[\Rightarrow \sigma_+(f) = 0 = \sigma_-(f) \]
- $\sigma_\pm(f) = 0$
 \[\Rightarrow \text{can equip } f_\pm \text{ with Whitney disks in } S^4 \setminus f(S^2_\mp) \]
Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

\[f(S^2_+) \]
\[f(S^2_-) \]

\[\sigma_+(f) = -t^2 + 4t - 3 \]
\[\sigma_-(f) = t^0 - t^0 = 0 \]
Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

$$f(S^2_+)$$

$$f(S^2_-)$$

$+t^0$ $-t^0$ W

$$\sigma_+(f) = -t^2 + 4t - 3$$
$$\sigma_-(f) = t^0 - t^0 = 0$$

The Whitney disk intersects $f(S^2_-)$...

The Whitney disk intersects $f(S^2_-)$...
Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

\[f(S^2_+) \]

\[f(S^2_-) \]

The Whitney disk intersects $f(S^2_-)$... so can’t use to homotope f_- to an embedding

\[\sigma_+(f) = -t^2 + 4t - 3 \]

\[\sigma_-(f) = t^0 - t^0 = 0 \]
Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

$$f(S^2_+)$$

$$f(S^2_-)$$

The Whitney disk intersects $f(S^2_-)$... so can’t use to homotope f_- to an embedding

$$\sigma_+(f) = -t^2 + 4t - 3$$
$$\sigma_-(f) = t^0 - t^0 = 0$$
Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

The Whitney disk intersects $f(S_-^2)$... so can’t use to homotope f_- to an embedding.

$$f(S_+^2)$$

$$f(S_-^2)$$

$$\sigma_+(f) = -t^2 + 4t - 3$$
$$\sigma_-(f) = t^0 - t^0 = 0$$
Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

$$f(S^2_+)$$

$$f(S^2_-)$$

$\sigma_+(f) = -t^2 + 4t - 3$

$\sigma_-(f) = t^0 - t^0 = 0$

The Whitney disk intersects $f(S^2_-)$... so can’t use to homotope f_- to an embedding.
Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

$$f(S^2_+)$$

$$f(S^2_-)$$

$$\sigma_+(f) = -t^2 + 4t - 3$$

$$\sigma_-(f) = t^0 - t^0 = 0$$

The Whitney disk intersects $f(S^2_-)$... so can’t use to homotope f_- to an embedding

Solution: try to form a “secondary” Whitney disk V
Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

$$f(S^2_+)$$

$$f(S^2_-)$$

The Whitney disk intersects $f(S^2_-)$... so can’t use to homotope f_- to an embedding

Solution: try to form a “secondary” Whitney disk V

$$\sigma_+(f) = -t^2 + 4t - 3$$

$$\sigma_-(f) = t^0 - t^0 = 0$$
Is σ the complete obstruction to embedding?

That is, is the existence of Whitney disks alone enough to embed?

\[f(S^2_+) \]

\[f(S^2_-) \]

\[\sigma_+(f) = -t^2 + 4t - 3 \]

\[\sigma_-(f) = t^0 - t^0 = 0 \]

The Whitney disk intersects $f(S^2_-)$... so can’t use to homotope f_- to an embedding

Solution: try to form a “secondary” Whitney disk V

\[\rightsquigarrow \text{define a “secondary” invariant that obstructs this} \]
Is σ the complete obstruction to embedding?

Some history:

- 1997: Li defined a secondary link htpy invariant $\omega = (\omega_+, \omega_-)$
Is σ the complete obstruction to embedding?

Some history:

- 1997: Li defined a secondary link htpy invariant $\omega = (\omega_+, \omega_-)$

 - ω_\pm supposes $\sigma_\pm = 0$ and counts intersections between $f(S_\pm)$ and WDs in $S^4 - f(S_\pm^2)$
Is σ the complete obstruction to embedding?

Some history:

- 1997: Li defined a secondary link htpy invariant $\omega = (\omega_+, \omega_-)$
 - ω_\pm supposes $\sigma_\pm = 0$ and counts intersections between $f(S_\pm)$ and WDs in $S^4 - f(S^2_\mp)$
 - f link htpic to embedding $\Rightarrow \omega(f) = (0, 0)$
Is σ the complete obstruction to embedding?

Some history:

- 1997: Li defined a secondary link htpy invariant $\omega = (\omega_+, \omega_-)$
 - ω_{\pm} supposes $\sigma_{\pm} = 0$ and counts intersections between $f(S_{\pm})$ and WDs in $S^4 - f(S^2_{\mp})$
 - f link htpic to embedding $\Rightarrow \omega(f) = (0, 0)$
 - “Example” of link map f with $\sigma(f) = (0, 0)$ but $\omega(f) \neq (0, 0)$
 \Rightarrow **Counterexample**
Is σ the complete obstruction to embedding?

Some history:

- 1997: Li defined a secondary link htpy invariant $\omega = (\omega_+, \omega_-)$
 - ω_\pm supposes $\sigma_\pm = 0$ and counts intersections between $f(S_\pm)$ and WDs in $S^4 - f(S^2_\pm)$
 - f link htpic to embedding $\Rightarrow \omega(f) = (0, 0)$
 - “Example” of link map f with $\sigma(f) = (0, 0)$ but $\omega(f) \neq (0, 0)$ \Rightarrow Counterexample

- 1997: Pilz found mistake in Li’s example (actually had $\omega = (0, 0)$)
Nothing new: \(\sigma(f) = (0, 0) \Rightarrow \omega(f) = (0, 0) \)

Theorem (L.)

If \(f : S^2_+ \cup S^2_- \rightarrow S^4 \) is a link map with both \(\sigma_+(f) = 0 \) and \(\sigma_-(f) = 0 \), then:

(after a link homotopy) each component \(f_\pm \) can be equipped with framed, immersed Whitney disks whose interiors are disjoint from both \(f(S^2_+) \) and \(f(S^2_-) \).
Nothing new: \(\sigma(f) = (0, 0) \Rightarrow \omega(f) = (0, 0) \)

Theorem (L.)

If \(f : S^2_+ \cup S^2_- \to S^4 \) is a link map with both \(\sigma_+(f) = 0 \) and \(\sigma_-(f) = 0 \), then:

(after a link homotopy) each component \(f_{\pm} \) can be equipped with framed, immersed Whitney disks whose interiors are disjoint from both \(f(S^2_+) \) and \(f(S^2_-) \).

\[f(S^2_+) \]
\[f(S^2_-) \]
Nothing new: $\sigma(f) = (0, 0) \Rightarrow \omega(f) = (0, 0)$

Theorem (L.)

If $f : S^2_+ \cup S^2_- \to S^4$ is a link map with both $\sigma_+(f) = 0$ and $\sigma_-(f) = 0$, then:

(after a link homotopy) each component f_{\pm} can be equipped with framed, immersed Whitney disks whose interiors are disjoint from both $f(S^2_+)$ and $f(S^2_-)$.
Nothing new: \(\sigma(f) = (0, 0) \Rightarrow \omega(f) = (0, 0) \)

Theorem (L.)

Let \(f : S^2_+ \cup S^2_- \to S^4 \) be a link map with \(\sigma_-(f) = 0 \).

If \(\sigma_+(f) = \sum_{p \in \text{self}(f_+)} (t^{np} - 1) \),

then \(\omega_-(f) = \# \{ p : n_p \equiv 2 \mod 4 \} \mod 2 \).

In particular, there are infinitely many link maps \(f \) with \(\omega(f) = (0, 0) \) but \(\sigma(f) \neq (0, 0) \).
Towards a better invariant?

Let \(f : S^2_+ \cup S^2_- \to S^4 \) be a link map.

Proposition (S. Kamada)

After a link homotopy, \(f(S^2_-) \) is an unknotted immersion in \(S^4 \) with \(d \geq 0 \) pairs of oppositely-signed double points.
Towards a better invariant?

Let \(f : S^2_+ \cup S^2_- \to S^4 \) be a link map. Write \(X_- = S^4 \setminus f(S^2_-) \).

- \(\pi_1(X_-) \cong \mathbb{Z}, \quad \mathbb{Z}\pi_1 = \mathbb{Z}[t, t^{-1}] \)
- \(\pi_2(X_-) \cong \left(\bigoplus_{i=1}^{2d} \mathbb{Z} \right)[t, t^{-1}] \)

Diagram:

\[f(S^2_-) \]

\[\quad \rightarrow \quad \]

\[p_1^- \quad p_1^+ \quad \]

\[\quad \rightarrow \quad \]

\[p_2^- \quad p_2^+ \quad \]
Towards a better invariant?

Construct generators of \(\pi_2(X_-) = \left(\bigoplus_{i=1}^{2d} \mathbb{Z} \right)[t, t^{-1}] \)

- \(H_2(X_-) = \mathbb{Z}^{2d} \)
- Generated by linking tori \(\{ T_i^+, T_i^- \}_{i=1}^d \)

\[f(S_2^-) \]
Towards a better invariant?

Construct generators of $\pi_2(X^-) = \left(\bigoplus_{i=1}^{2d} \mathbb{Z}\right)[t, t^{-1}]$.

- Surger T_p to a 2-sphere A_p
- $A_p = (T_p \setminus \text{annulus}) \cup (D_p \cup D'_p)$
Towards a better invariant?

Construct generators of $\pi_2(X_-) = (\bigoplus_{i=1}^{2d} \mathbb{Z})[t, t^{-1}]$.

- $A_p = (T_p \setminus \text{annulus}) \cup (D_p \cup D'_p)$
Towards a better invariant?

Construct generators of $\pi_2(X \approx) = (\bigoplus_{i=1}^{2d} \mathbb{Z})[t, t^{-1}]$.

- $A_p = (T_p \setminus \text{annulus}) \cup (D_p \cup D'_p)$
- $\lambda(f_+, A_p) = (1 + t)\lambda(f_+, D_p) \in \mathbb{Z}\pi_1(X \approx) = \mathbb{Z}[t, t^{-1}]$
Towards a better invariant?

Construct generators of $\pi_2(X_-) = (\bigoplus_{i=1}^{2d} \mathbb{Z})[t, t^{-1}]$.

- $A_p = (T_p \setminus \text{annulus}) \cup (D_p \cup D'_p)$
- $\lambda(f_+, A_p) = (1 + t)\lambda(f_+, D_p) \in \mathbb{Z}\pi_1(X_-) = \mathbb{Z}[t, t^{-1}]$
- $\mu(A_p) = \text{sign}_p(t - 1) \in \mathbb{Z}[t]$
Towards a better invariant?

Construct generators of $\pi_2(X_-) = (\bigoplus_{i=1}^{2d} \mathbb{Z})[t, t^{-1}]$.

- $A_p = (T_p \setminus \text{annulus}) \cup (D_p \cup D'_p)$
Towards a better invariant?

Construct generators of $\pi_2(X_-) = (\bigoplus_{i=1}^{2d} \mathbb{Z})[t, t^{-1}]$.

- $A_p = (T_p \setminus \text{annulus}) \cup (D_p \cup D'_p)$
- $\lambda(f_+, D_p) = (1 + t)\lambda(f_+, E_p)$
Towards a better invariant?

Construct generators of $\pi_2(X_-) = (\bigoplus_{i=1}^{2d} \mathbb{Z})[t, t^{-1}]$.

- $A_p = (T_p \setminus \text{annulus}) \cup (D_p \cup D'_p)$
- $\lambda(f_+, D_p) = (1 + t)\lambda(f_+, E_p)$
- $\lambda(f_+, E_p) \xrightarrow{t \mapsto 1} n_p$ where $\sigma_-(f) = \sum_p \text{sign}_p(t^{np} - 1)$
Towards a better invariant?

Let $f : S^2_+ \cup S^2_- \to S^4$ be a link map with $\sigma_-(f) = \text{sign}_p(t^{np} - 1)$.
Towards a better invariant?

Let $f : S^2_+ \cup S^2_- \to S^4$ be a link map with $\sigma_-(f) = \text{sign}_p(t^{np} - 1)$.

After a link homotopy...

- $\pi_2(X_-) = (\bigoplus_{i=1}^{2d} \mathbb{Z})[t, t^{-1}]$ has basis rep. by 2-spheres $\{A_p\}_p$
- $A_p \cap A_q = \emptyset$
- $\mu(A_p) = \text{sign}_p(t - 1)$
- $\lambda(f_+, A_p) = (1 + t)^2 c_p(t)$, $c_p(1) = n_p$
Towards a better invariant?

Let $f : S^2_+ \cup S^2_- \rightarrow S^4$ be a link map with $\sigma_-(f) = \text{sign}_p(t^{np} - 1)$.

After a link homotopy...

- $\pi_2(X_-) = \left(\bigoplus_{i=1}^{2d} \mathbb{Z} \right)[t, t^{-1}]$ has basis rep. by 2-spheres $\{A_p\}_p$
- $A_p \cap A_q = \emptyset$
- $\mu(A_p) = \text{sign}_p(t - 1)$
- $\lambda(f_+, A_p) = (1 + t)^2c_p(t), \quad c_p(1) = n_p$
- So: $f_+ \in \pi_2(X_-)$

\[f_+ = \sum_p c_p(t)A_p, \quad c_p(1) = n_p \]
Towards a better invariant?

Let $f : S^2_+ \cup S^2_- \to S^4$ be a link map with $\sigma_-(f) = 0$.

After a link homotopy...

- $f_+ = \sum_j t^{n_j} A^+_j + t^{m_j} A^-_j$, \hspace{1cm} $\mu(A^\pm_j) = \pm(t - 1)$
Towards a better invariant?

Let \(f : S_+^2 \cup S_-^2 \to S^4 \) be a link map with \(\sigma_-(f) = 0 \).

After a link homotopy...

- \(f_+ = \sum_j t^{n_j} A_j^+ + t^{m_j} A_j^-, \quad \mu(A_j^\pm) = \pm(t - 1) \)

- Represented by tubing pairwise-tubed 2-spheres....

![Diagram of tubing pairwise-tubed 2-spheres]
Towards a better invariant?

Let \(f : S_+^2 \cup S_-^2 \to S^4 \) be a link map with \(\sigma_-(f) = 0 \).

After a link homotopy...

- \(f_+ = \sum_j t^{n_j} A_j^+ + t^{m_j} A_j^- \), \(\mu(A_j^\pm) = \pm(t - 1) \)

- Represented by tubing pairwise-tubed 2-spheres....

\[
A_j^+ + t^2 A_j^- \subset X_-
\]
Towards a better invariant?

Let \(f : S^2_+ \cup S^2_- \to S^4 \) be a link map with \(\sigma_-(f) = 0 \).

After a link homotopy...

\(f_+ = \sum_j t^{n_j} A^+_j + t^{m_j} A^-_j \), \(\mu(A^\pm_j) = \pm(t - 1) \)

Represented by tubing pairwise-tubed 2-spheres....

\[A^+_j + t^2 A^-_j \subset X_- \]

\(f(S^2_-) \)
Towards a better invariant?

Let $f : S^2_+ \cup S^2_- \to S^4$ be a link map with $\sigma_-(f) = 0$.

After a link homotopy...

- $f_+ = \sum_j t^{n_j} A^+_j + t^{m_j} A^-_j$, \quad $\mu(A^\pm_j) = \pm(t - 1)$

- Represented by tubing pairwise-tubed 2-spheres....

$$A^+_j + t^2 A^-_j \subset X_-$$
• **Question:** Does σ classify link maps?
Still open

- **Question:** Does σ classify link maps?

- **Question:** Can a secondary invariant for 3-component link maps be defined? Is it stronger than σ?