Термодинамическое описание различных физических процессов с использованием только первого начала термодинамики является неполным, так как при этом не учитывается принципиальное отличие описания реально существующих в природе необратимых процессов от описания обратимых процессов. Для построения адекватной теории потребовалось введение дополнительного постулата, получившего название
второго начала термодинамики. Введение этого начала позволило разделить описание равновесных (обратимых) и неравновесных (необратимых) процессов.
К категории обратимых относятся процессы, для которых допускается возвращение в исходное состояние без каких либо изменений в окружающей среде. При этом прямой и обратный процессы должны проходить через одну и туже последовательность равновесных состояний. Реально в природе такие процессы не наблюдаются, но они, так же как модель идеального газа, являются удобной идеализацией, позволяющей построить описание, близкое к реальному описанию в целом ряде практически важных случаев. При этом используется модель
квазистатического процесса, то есть такого процесса, который протекает с бесконечно малой скоростью. При таких процессах термодинамическая система проходит через последовательность равновесных состояний, так как все возмущения, возникающие при переходе из одного состояния в другое, успевают затухнуть из-за очень малой скорости перехода. Описанием обратимых термодинамических процессов занимается равновесная термодинамика, изложением основных положений которой будет в основном ограничено проводимое нами рассмотрение.
Второе начало термодинамики, примененное для описания необратимых процессов, позволяет сформулировать
закон возрастания энтропии, который однозначно устанавливает характер изменения энтропии в изолированной термодинамической системе. Этот закон описывает самопроизвольное стремление изолированной системы к состоянию термодинамического равновесия.
Самостоятельное значение в термодинамике имеет
третье начало, которое позволяет определять энтропию равновесной термодинамической системы при низких температурах.