c о д е р ж а н и е | а л ф а в и т н ы й   у к а з а т е л ь | п о и с к   
 
  ГЛАВА 1. Первое начало термодинамики
 
 

1.2. Внутренняя энергия и температура термодинамической системы
     Полная энергия термодинамической системы представляет собой сумму кинетической энергии движения всех тел, входящих в систему, потенциальной энергии их взаимодействия и энергии, содержащейся внутри этих тел. Если из полной энергии вычесть кинетическую энергию, характеризующую макроскопическое движение системы как целого, и потенциальную энергию её взаимодействия с внешними макроскопическими телами, то оставшаяся часть будет представлять собой внутреннюю энергию термодинамической системы.
     Внутренняя энергия включает в себя энергию микроскопического движения и взаимодействия частиц, а так же внутримолекулярную энергию (колебательную и вращательную энергии молекул) и внутриядерную энергию.
     Полная энергия системы (а, следовательно, и внутренняя энергия) также как потенциальная энергия тела в механике может быть определена с точностью до произвольной константы. Поэтому, если любые макроскопические движения в системе и взаимодействия её с внешними телами отсутствуют, можно принять "макроскопические" части кинетической и потенциальной энергий равными нулю и считать внутреннюю энергию системы равной её полной энергии. Такая ситуация имеет место в случае состояния термодинамического равновесия.
     Введём характеристику состояния термодинамического равновесия - температуру. Так называется величина, зависящая от параметров состояния, например, от давления и объёма газа, и являющаяся функцией внутренней энергии системы. Эта функция обычно имеет монотонную зависимость от внутренней энергии системы, то есть растёт с ростом внутренней энергии.
     Температура термодинамических систем, находящихся в состоянии равновесия, обладает следующими свойствами:
     Если две равновесные термодинамические системы, находятся в тепловом контакте и имеют одинаковую температуру, то совокупная термодинамическая система находится в состоянии термодинамического равновесия при той же температуре.
     Если какая-либо равновесная термодинамическая система имеет одну и ту же температуру с двумя другими системами, то эти три системы находятся в термодинамическом равновесии при одной и той же температуре.
     Таким образом, температура есть мера состояния термодинамического равновесия. Для установления этой меры уместно ввести понятие теплопередачи.
     Теплопередачей называется передача энергии без переноса вещества и совершения механической работы одним телом над другим.
     Если между телами, находящимися в тепловом контакте друг с другом, теплопередача отсутствует, то тела имеют одинаковые температуры и находятся в состоянии термодинамического равновесия друг с другом.
     Если тела находятся при разных температурах, то теплопередача будет осуществляться таким образом, чтобы энергия передавалась от более нагретого тела менее нагретому, и это будет продолжаться до тех пор, пока температуры тел не сравняются (то есть система из двух тел стремится к состоянию термодинамического равновесия).
     Для возникновения процесса теплопередачи необходимо создание потоков теплоты, то есть требуется выход из состояния теплового равновесия. Поэтому равновесная термодинамика не описывает процесс теплопередачи, а только его результат - переход в новое равновесное состояние. Описание самого процесса теплопередачи будет выполнено в шестой главе, посвящённой физической кинетике.
     В заключении необходимо отметить, что если одна термодинамическая система обладает более высокой температурой, чем другая, то она не обязательно будет обладать и большей внутренней энергией, несмотря на возрастание внутренней энергии системы с повышением её температуры. Например, больший объём воды может обладать большей внутренней энергией даже при более низкой температуре, чем у меньшего объёма воды. Однако, в этом случае теплопередача (перенос энергии) будет происходить не от тела с большей внутренней энергией к телу с меньшей внутренней энергией, а наоборот, так как направление переноса энергии определяется не величинами внутренних энергий систем, а их температурами.



 
 
предыдущая | наверх | следующая   
 
 
© 2001. МГТУ им. Н.Э.Баумана | Designed by krE[]Sote