Создано: 02.08.2012 18:06
Предоставить рейтинг этому материалу
( Голосов: 9 ) 
Категория: Конспекты лекций
Число комментариев: 0
Просмотров: 34933

Аналитическая геометрия (1-й курс, 1-й семестр)

Конспект лекций

для студентов 1-го курса всех специальностей,
кроме ФН, ИБМ, ГУИМЦ, ИУ7, ИУ9, РК6, АКФ3.

авторы А.Н. Канатников, А.П. Крищенко

Это расширенный вариант лекций, читаемых студентам большинства специальностей в МГТУ имени Н.Э. Баумана. Дополнительный материал, включенный в этот вариант, представлен теми вопросами, которые вынесены на самостоятельное изучение и в аудитории, как правило, не рассматриваются (исключение — теория определителей, не отраженная в данных лекциях). Кроме того, увеличено количество примеров решения типовых задач, что, на наш взгляд, также будет полезным при изучении курса (но при этом не отменяет семинарские занятия). Пока в текст не включена заключительная лекция по комплексным числам и многочленам, которая на экзамен не выносится и необходима для изучения математики во 2-м семестре.

В начале каждой лекции приведено краткое содержание, которое почти дословно совпадает с календарным планом по курсу (расхождения в основном вызваны разделением материала на отдельные лекции).  pdf  Скачать все лекции в одном файле


pdf  Лекция 1 . Скалярные и векторные величины. Понятие геометрического вектора (направленного отрезка). Нуль-вектор, единичный вектор (орт). Коллинеарные и компланарные векторы. Равенство векторов. Связанные, скользящие, свободные векторы. Линейные операции над векторами, свойства этих операций. Ортогональная проекция векторов на направление. Теоремы о проекциях.

pdf  Лекция 2 . Линейная комбинация векторов. Линейная зависимость векторов. Критерий линейной зависимости двух и трех векторов, линейная зависимость четырех векторов. Векторные пространства V1, V2, V3 и базисы в них. Разложение вектора по базису. Координаты вектора. Линейные операции над векторами, заданными своими координатами. Ортонормированный базис. Скалярное произведение векторов, его механический смысл. Вычисление скалярного произведения векторов, заданных своими координатами в ортонормированном базисе. Вычисление длины вектора, косинуса угла между векторами и проекции вектора на направление. Координаты вектора в ортонормированном базисе как проекции этого вектора на направление базисных векторов. Направляющие косинусы вектора.

pdf  Лекция 3 . Ориентация базиса, правые и левые тройки векторов. Векторное произведение двух векторов, его механический и геометрический смысл. Свойства векторного произведения. Вычисление векторного произведения в координатной форме в ортонормированном базисе. Смешанное произведение трех векторов и его геометрический смысл. Объем тетраэдра. Свойства смешанного произведения. Вычисление смешанного произведения в ортонормированном базисе. Условие компланарности трех векторов. 

pdf  Лекция 4 . Декартова прямоугольная система координат на плоскости и в пространстве. Радиус-вектор точки, координаты точки; связь координат вектора с координатами его начала и конца. Простейшие задачи аналитической геометрии: вычисление длины отрезка, деление отрезка в данном отношении. Геометрический смысл уравнения f(x,y)=0 на плоскости и F(x,y,z)=0 в пространстве. Различные виды уравнения прямой на плоскости: общее уравнение, параметрические уравнения, каноническое уравнение, уравнение прямой с угловым коэффициентом, уравнение прямой «в отрезках». Нормальный и направляющий векторы прямой. Взаимное расположение двух прямых на плоскости. Вычисление угла между прямыми. Расстояние от точки до прямой.

pdf  Лекция 5 . Различные виды уравнения плоскости в пространстве: общее уравнение плоскости; уравнение плоскости, проходящей через три точки; уравнение плоскости «в отрезках». *Связка плоскостей. Взаимное расположение двух плоскостей в пространстве. Угол между плоскостями. Расстояние от точки до плоскости. 

pdf  Лекция 6 . Прямая в пространстве. Общие уравнения прямой. Параметрические уравнения прямой; векторное уравнение прямой; канонические уравнения прямой. Уравнения прямой, проходящей через две заданные точки. Взаимное расположение прямой и плоскости, угол между прямой и плоскостью. Взаимное расположение двух прямых в пространстве, угол между прямыми в пространстве. Расстояние от точки до прямой в пространстве. Расстояние между двумя прямыми. 

Лекции 7-8. Кривые второго порядка: эллипс, гипербола, парабола. Вывод их канонических уравнений. Исследование формы кривых второго порядка. Параметры кривых второго порядка (полуоси, фокусное расстояние, эксцентриситет). Оптическое свойство. Смещенные кривые второго порядка. Исследование неполного уравнения кривой второго порядка. 

pdf  Лекция 9 . Поверхности второго порядка. Цилиндрические поверхности. Поверхности вращения. Эллипсоид. Конус. Гиперболоиды. Параболоиды. Их канонические уравнения. Исследование поверхностей второго порядка методом сечений.

pdf  Лекция 10 . Матрицы. Виды матриц. Равенство матриц. Линейные операции с матрицами и их свойства. Транспонирование матриц. Операция умножения и ее свойства. Элементарные преобразования матриц, приведение матрицы к ступенчатому виду элементарными преобразованиями строк. Блочные матрицы и операции с ними. *Прямая сумма матриц и ее свойства.

pdf  Лекция 11 . Обратная матрица. Теорема о ее единственности. Критерий существования обратной матрицы. Присоединенная матрица. Вычисление обратной матрицы с помощью присоединенной матрицы и с помощью элементарных преобразований. Матрица, обратная произведению двух обратимых матриц. Решение матричных уравнений вида AX=B и XA=B с невырожденной матрицей А. Формулы Крамера. 

pdf  Лекция 12 . Минор матрицы. Ранг матрицы. Базисный минор. Линейная зависимость и линейная независимость строк и столбцов матрицы. Критерий линейной зависимости. Теорема о базисном миноре и ее следствия. Инвариантность ранга матрицы относительно ее элементарных преобразований. Способы вычисления ранга матрицы. (pdf)

pdf  Лекция 13 . Системы линейных алгебраических уравнений (СЛАУ). Координатная, матричная и векторная формы записи. Критерий Кронекера - Капелли совместности СЛАУ. Однородные СЛАУ. Критерий существования ненулевого решения однородной СЛАУ. 

pdf  Лекция 14 . Свойства решений однородной СЛАУ. Фундаментальная система решений однородной СЛАУ, теорема о ее существовании. Нормальная фундаментальная система решений. Теорема о структуре общего решения однородной СЛАУ. Теорема о структуре общего решения неоднородной СЛАУ.

Google Maps:

Об авторе